Regulation of Mitotic Exit in Saccharomyces cerevisiae

  • Bàrbara BaroEmail author
  • Ethel QueraltEmail author
  • Fernando Monje-CasasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1505)


The Mitotic Exit Network (MEN) is an essential signaling pathway, closely related to the Hippo pathway in mammals, which promotes mitotic exit and initiates cytokinesis in the budding yeast Saccharomyces cerevisiae. Here, we summarize the current knowledge about the MEN components and their regulation.

Key words

Mitosis Mitotic exit network MEN Cdc14 phosphatase Hippo pathway 



We thank all the members of our laboratories for discussion and critical reading of this chapter. E.Q. laboratory is supported by the Spanish Ministry of Economy and Competitiveness (BFU2013-43132-P). F.M.-C. laboratory is supported by the Spanish Ministry of Economy and Competitiveness (BFU2013-43718-P), Junta de Andalucía (CVI-5806), and the European Union (FEDER).


  1. 1.
    Bardin AJ, Amon A (2001) Men and sin: what’s the difference? Nat Rev Mol Cell Biol 2:815–826PubMedCrossRefGoogle Scholar
  2. 2.
    Queralt E, Uhlmann F (2008) Cdk-counteracting phosphatases unlock mitotic exit. Curr Opin Cell Biol 20(6):661–668PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hotz M, Barral Y (2014) The mitotic exit network: new turns on old pathways. Trends Cell Biol 24(3):145–152PubMedCrossRefGoogle Scholar
  4. 4.
    Culotti J, Hartwell LH (1971) Genetic control of the cell division cycle in yeast. Exp Cell Res 67:389–401PubMedCrossRefGoogle Scholar
  5. 5.
    Surana U, Amon A, Dowzer C et al (1993) Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J 12:1969–1978PubMedPubMedCentralGoogle Scholar
  6. 6.
    Visintin R, Craig K, Hwang ES et al (1998) The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 2:709–718PubMedCrossRefGoogle Scholar
  7. 7.
    Hartwell LH, Smith D (1985) Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics 110:381–395PubMedPubMedCentralGoogle Scholar
  8. 8.
    Shou W, Seol JH, Shevchenko A et al (1999) Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97:233–244PubMedCrossRefGoogle Scholar
  9. 9.
    Visintin R, Hwang ES, Amon A (1999) Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398:818–823PubMedCrossRefGoogle Scholar
  10. 10.
    Clemente-Blanco A, Sen N, Mayan-Santos M et al (2011) Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nat Cell Biol 13:1450–1456PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Guillamot M, Manchado E, Chiesa M et al (2011) Cdc14b regulates mammalian RNA polymerase II and represses cell cycle transcription. Sci Rep 1:1–7CrossRefGoogle Scholar
  12. 12.
    Azzam R, Chen SL, Shou W et al (2004) Phosphorylation by cyclin B-Cdk underlies release of mitotic exit activator Cdc14 from the nucleolus. Science 305:516–519PubMedCrossRefGoogle Scholar
  13. 13.
    Queralt E, Lehane C, Novak B et al (2006) Downregulation of PP2ACdc55 phosphatase by separase initiates mitotic exit in budding yeast. Cell 125:719–732PubMedCrossRefGoogle Scholar
  14. 14.
    Calabria I, Baro B, Rodriguez-Rodriguez J-A et al (2012) Zds1 regulates PP2ACdc55 activity and Cdc14 activation during mitotic exit through its Zds_C motif. J Cell Sci 125(Pt 12):2875–2884PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Yoshida S, Toh-e A (2002) Budding yeast Cdc5 phosphorylates Net1 and assists Cdc14 release from the nucleolus. Biochem Biophys Res Commun 294:687–691PubMedCrossRefGoogle Scholar
  16. 16.
    Rock JM, Amon A (2009) The FEAR network. Curr Biol 19:R1063–R1068PubMedCrossRefGoogle Scholar
  17. 17.
    Mocciaro A, Schiebel E (2010) Cdc14: a highly conserved family of phosphatases with non-conserved functions? J Cell Sci 123:2867–2876PubMedCrossRefGoogle Scholar
  18. 18.
    Bardin AJ, Visintin R, Amon A (2000) A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell 102:21–31PubMedCrossRefGoogle Scholar
  19. 19.
    Pereira G, Hofken T, Grindlay J et al (2000) The Bub2p spindle checkpoint links nuclear migration with mitotic exit. Mol Cell 6:1–10PubMedCrossRefGoogle Scholar
  20. 20.
    Pereira G, Schiebel E (2003) Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science 302:2120–2124PubMedCrossRefGoogle Scholar
  21. 21.
    D’Amours D, Stegmeier F, Amon A (2004) Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117:455–469PubMedCrossRefGoogle Scholar
  22. 22.
    Sullivan M, Higuchi T, Katis VL et al (2004) Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 117:471–482PubMedCrossRefGoogle Scholar
  23. 23.
    Higuchi T, Uhlmann F (2005) Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature 433:171–176PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Khmelinskii A, Lawrence C, Roostalu J et al (2007) Cdc14-regulated midzone assembly controls anaphase B. J Cell Biol 177:981–993PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Woodbury EL, Morgan DO (2007) Cdk and APC activities limit the spindle-stabilizing function of Fin1 to anaphase. Nat Cell Biol 9:106–112PubMedCrossRefGoogle Scholar
  26. 26.
    Mirchenko L, Uhlmann F (2010) Sli15INCENP dephosphorylation prevents mitotic checkpoint reengagement due to loss of tension at anaphase onset. Curr Biol 20:1396–1401PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Clemente-Blanco A, Mayán-Santos M, Schneider DA et al (2009) Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 458:219–222PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Charles JF, Jaspersen SL, Tinker-Kulberg RL et al (1998) The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae. Curr Biol 8:497–507PubMedCrossRefGoogle Scholar
  29. 29.
    Stegmeier F, Visintin R, Amon A (2002) Separase, Polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108:207–220PubMedCrossRefGoogle Scholar
  30. 30.
    Mah AS, Elia AEH, Devgan G et al (2005) Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochem 6:22PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Rock JM, Amon A (2011) Cdc15 integrates Tem1 GTPase-mediated spatial signals with Polo kinase-mediated temporal cues to activate mitotic exit. Genes Dev 25:1943–1954PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Manzoni R, Montani F, Visintin C et al (2010) Oscillations in Cdc14 release and sequestration reveal a circuit underlying mitotic exit. J Cell Biol 190:209–222PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Mohl DA, Huddleston MJ, Collingwood TS et al (2009) Dbf2-Mob1 drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from mitosis. J Cell Biol 184:527–539PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Jans DA, Moll T, Nasmyth K et al (1995) Cyclin-dependent kinase site-regulated signal-dependent nuclear localization of the SW15 yeast transcription factor in mammalian cells. J Biol Chem 270:17064–17067PubMedCrossRefGoogle Scholar
  35. 35.
    Knapp D, Bhoite L, Stillman DJ et al (1996) The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1. Mol Cell Biol 16:5701–5707PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jaquenoud M, van Drogen F, Peter M (2002) Cell cycle-dependent nuclear export of Cdh1p may contribute to the inactivation of APC/C(Cdh1). EMBO J 21:6515–6526PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jaspersen SL, Charles JF, Morgan DO (1999) Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr Biol 9:227–236PubMedCrossRefGoogle Scholar
  38. 38.
    Shirayama M, Zachariae W, Ciosk R et al (1998) The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J 17:1336–1349PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Visintin C, Tomson BN, Rahal R et al (2008) APC/C-Cdh1-mediated degradation of the Polo kinase Cdc5 promotes the return of Cdc14 into the nucleolus. Genes Dev 22:79–90PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Shirayama M, Matsui Y, Toh EA (1994) The yeast TEM1 gene, which encodes a GTP-binding protein, is involved in termination of M phase. Mol Cell Biol 14:7476–7482PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Geymonat M, Spanos A, Smith SJM et al (2002) Control of mitotic exit in budding yeast: in vitro regulation of Tem1 GTPase by Bub2 and Bfa1. J Biol Chem 277:28439–28445PubMedCrossRefGoogle Scholar
  42. 42.
    Geymonat M, Spanos A, de Bettignies G et al (2009) Lte1 contributes to Bfa1 localization rather than stimulating nucleotide exchange by Tem1. J Cell Biol 187:497–511PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bertazzi DT, Kurtulmus B, Pereira G (2011) The cortical protein Lte1 promotes mitotic exit by inhibiting the spindle position checkpoint kinase Kin4. J Cell Biol 193:1033–1048PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Falk JE, Chan LY, Amon A (2011) Lte1 promotes mitotic exit by controlling the localization of the spindle position checkpoint kinase Kin4. Proc Natl Acad Sci U S A 108:12584–12590PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Asakawa K, Yoshida S, Otake F et al (2001) A novel functional domain of Cdc15 kinase is required for its interaction with Tem1 GTPase in Saccharomyces cerevisiae. Genetics 157:1437–1450PubMedPubMedCentralGoogle Scholar
  46. 46.
    Mah AS, Jang J, Deshaies RJ (2001) Protein kinase Cdc15 activates the Dbf2-Mob1 kinase complex. Proc Natl Acad Sci U S A 98:7325–7330PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Visintin R, Amon A (2001) Regulation of the mitotic exit protein kinases Cdc15 and Dbf2. Mol Biol Cell 12:2961–2974PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Fraschini R, D’Ambrosio C, Venturetti M et al (2006) Disappearance of the budding yeast Bub2-Bfa1 complex from the mother-bound spindle pole contributes to mitotic exit. J Cell Biol 172:335–346PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ro H-S, Song S, Lee KS (2002) Bfa1 can regulate Tem1 function independently of Bub2 in the mitotic exit network of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99:5436–5441PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Scarfone I, Venturetti M, Hotz M et al (2015) Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit. PLoS Genet 11:e1004938PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hu F, Wang Y, Liu D et al (2001) Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints. Cell 107:655–665PubMedCrossRefGoogle Scholar
  52. 52.
    Geymonat M, Spanos A, Walker PA et al (2003) In vitro regulation of budding yeast Bfa1/Bub2 GAP activity by Cdc5. J Biol Chem 278:14591–14594PubMedCrossRefGoogle Scholar
  53. 53.
    Monje-Casas F, Amon A (2009) Cell polarity determinants establish asymmetry in MEN signaling. Dev Cell 16:132–145PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Pereira G, Tanaka TU, Nasmyth K et al (2001) Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. EMBO J 20:6359–6370PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kim J, Luo G, Bahk YY et al (2012) Cdc5-dependent asymmetric localization of bfa1 fine-tunes timely mitotic exit. PLoS Genet 8:e1002450PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Molk JN, Schuyler SC, Liu JY et al (2004) The differential roles of budding yeast Tem1p, Cdc15p, and Bub2p protein dynamics in mitotic exit. Mol Biol Cell 15:1519–1532PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Valerio-Santiago M, Monje-Casas F (2011) Tem1 localization to the spindle pole bodies is essential for mitotic exit and impairs spindle checkpoint function. J Cell Biol 192:599–614PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Baro B, Rodriguez-Rodriguez JA, Calabria I et al (2013) Dual regulation of the Mitotic Exit Network (MEN) by PP2A-Cdc55 phosphatase. PLoS Genet 9:e1003966PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gruneberg U, Campbell K, Simpson C et al (2000) Nud1p links astral microtubule organization and the control of exit from mitosis. EMBO J 19:6475–6488PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rock JM, Lim D, Stach L et al (2013) Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes. Science (New York, NY) 340:871–875CrossRefGoogle Scholar
  61. 61.
    Luca FC, Mody M, Kurischko C et al (2001) Saccharomyces cerevisiae Mob1p is required for cytokinesis and mitotic exit. Mol Cell Biol 21:6972–6983PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Maekawa H, Priest C, Lechner J et al (2007) The yeast centrosome translates the positional information of the anaphase spindle into a cell cycle signal. J Cell Biol 179:423–436PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Park CJ, Park JE, Karpova TS et al (2008) Requirement for the budding yeast polo kinase Cdc5 in proper microtubule growth and dynamics. Eukaryot Cell 7:444–453PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Cenamor R, Jimenez J, Cid VJ et al (1999) The budding yeast Cdc15 localizes to the spindle pole body in a cell-cycle-dependent manner. Mol Cell Biol Res Commun 2:178–184PubMedCrossRefGoogle Scholar
  65. 65.
    Jaspersen SL, Morgan DO (2000) Cdc14 activates cdc15 to promote mitotic exit in budding yeast. Curr Biol 10:615–618PubMedCrossRefGoogle Scholar
  66. 66.
    Xu S, Huang HK, Kaiser P et al (2000) Phosphorylation and spindle pole body localization of the Cdc15p mitotic regulatory protein kinase in budding yeast. Curr Biol 10:329–332PubMedCrossRefGoogle Scholar
  67. 67.
    Menssen R, Neutzner A, Seufert W (2001) Asymmetric spindle pole localization of yeast Cdc15 kinase links mitotic exit and cytokinesis. Curr Biol 11:345–350PubMedCrossRefGoogle Scholar
  68. 68.
    Konig C, Maekawa H, Schiebel E (2010) Mutual regulation of cyclin-dependent kinase and the mitotic exit network. J Cell Biol 188:351–368PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Harrison JC, Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209–235PubMedCrossRefGoogle Scholar
  70. 70.
    Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393PubMedCrossRefGoogle Scholar
  71. 71.
    Pereira G, Yamashita YM (2011) Fly meets yeast: checking the correct orientation of cell division. Trends Cell Biol 21:526–533PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Caydasi AK, Pereira G (2009) Spindle alignment regulates the dynamic association of checkpoint proteins with yeast spindle pole bodies. Dev Cell 16:146–156PubMedCrossRefGoogle Scholar
  73. 73.
    Chan LY, Amon A (2009) The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4. Genes Dev 23:1639–1649PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    D’Aquino KE, Monje-Casas F, Paulson J et al (2005) The protein kinase Kin4 inhibits exit from mitosis in response to spindle position defects. Mol Cell 19:223–234PubMedCrossRefGoogle Scholar
  75. 75.
    Pereira G, Schiebel E (2005) Kin4 kinase delays mitotic exit in response to spindle alignment defects. Mol Cell 19:209–221PubMedCrossRefGoogle Scholar
  76. 76.
    Hotz M, Lengefeld J, Barral Y (2012) The MEN mediates the effects of the spindle assembly checkpoint on Kar9-dependent spindle pole body inheritance in budding yeast. Cell Cycle 11:3109–3116PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hotz M, Leisner C, Chen D et al (2012) Spindle pole bodies exploit the mitotic exit network in metaphase to drive their age-dependent segregation. Cell 148:958–972PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Liang FS, Wang YC (2007) DNA damage checkpoints inhibit mitotic exit by two different mechanisms. Mol Cell Biol 27:5067–5078PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Valerio-Santiago M, de los Santos-Velázquez AI, Monje-Casas F (2013) Inhibition of the mitotic exit network in response to damaged telomeres. PLoS Genet 9:1–15CrossRefGoogle Scholar
  80. 80.
    Jin Q-W, Zhou M, Bimbo A et al (2006) A role for the septation initiation network in septum assembly revealed by genetic analysis of sid2-250 suppressors. Genetics 172:2101–2112PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Hachet O, Simanis V (2008) Mid1p/anillin and the septation initiation network orchestrate contractile ring assembly for cytokinesis. Genes Dev 22:3205–3216PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Yang X, Yu K, Hao Y et al (2004) LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1. Nat Cell Biol 6:609–617PubMedCrossRefGoogle Scholar
  83. 83.
    Jiménez J, Cid VJ, Cenamor R et al (1998) Morphogenesis beyond cytokinetic arrest in Saccharomyces cerevisiae. J Cell Biol 143:1617–1634PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Jiménez J, Castelao BA, González-Novo A et al (2005) The role of MEN (mitosis exit network) proteins in the cytokinesis of Saccharomyces cerevisiae. Int Microbiol 8:33–42PubMedGoogle Scholar
  85. 85.
    Frenz LM, Lee SE, Fesquet D et al (2000) The budding yeast Dbf2 protein kinase localises to the centrosome and moves to the bud neck in late mitosis. J Cell Sci 113(Pt 19):3399–3408PubMedGoogle Scholar
  86. 86.
    Yoshida S, Toh-e A (2001) Regulation of the localization of Dbf2 and mob1 during cell division of saccharomyces cerevisiae. Genes Genet Syst 76:141–147PubMedCrossRefGoogle Scholar
  87. 87.
    Song S, Grenfell TZ, Garfield S et al (2000) Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Mol Cell Biol 20:286–298PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lippincott J, Shannon KB, Shou W et al (2001) The Tem1 small GTPase controls actomyosin and septin dynamics during cytokinesis. J Cell Sci 114:1379–1386PubMedGoogle Scholar
  89. 89.
    Meitinger F, Palani S, Hub B et al (2013) Dual function of the NDR-kinase Dbf2 in the regulation of the F-BAR protein Hof1 during cytokinesis. Mol Biol Cell 24(9):1290–1304PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Vallen EA, Caviston J, Bi E (2000) Roles of Hof1p, Bni1p, Bnr1p, and myo1p in cytokinesis in Saccharomyces cerevisiae. Mol Biol Cell 11:593–611PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Nishihama R, Schreiter JH, Onishi M et al (2009) Role of Inn1 and its interactions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in S. cerevisiae. J Cell Biol 185:995–1012PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Oh Y, Schreiter J, Nishihama R et al (2013) Targeting and functional mechanisms of the cytokinesis-related F-BAR protein Hof1 during the cell cycle. Mol Biol Cell 24:1305–1320PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Meitinger F, Boehm ME, Hofmann A et al (2011) Phosphorylation-dependent regulation of the F-BAR protein Hof1 during cytokinesis. Genes Dev 25:875–888PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Yoshida S, Kono K, Lowery DM et al (2006) Polo-like kinase Cdc5 controls the local activation of Rho1 to promote cytokinesis. Science (New York, NY) 313:108–111CrossRefGoogle Scholar
  95. 95.
    Niiya F, Tatsumoto T, Lee KS et al (2006) Phosphorylation of the cytokinesis regulator ECT2 at G2/M phase stimulates association of the mitotic kinase Plk1 and accumulation of GTP-bound RhoA. Oncogene 25:827–837PubMedCrossRefGoogle Scholar
  96. 96.
    Burkard ME, Randall CL, Larochelle S et al (2007) Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc Natl Acad Sci U S A 104:4383–4388PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Dai BN, Yang Y, Chau Z et al (2007) Polo-like kinase 1 regulates RhoA during cytokinesis exit in human cells. Cell Prolif 40:550–557PubMedCrossRefGoogle Scholar
  98. 98.
    Petronczki M, Glotzer M, Kraut N et al (2007) Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev Cell 12:713–725PubMedCrossRefGoogle Scholar
  99. 99.
    Sanchez‐Diaz A, Nkosi PJ, Murray S et al (2012) The Mitotic Exit Network and Cdc14 phosphatase initiate cytokinesis by counteracting CDK phosphorylations and blocking polarised growth. EMBO J 31:3620–3634PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Sanchez-Diaz A, Marchesi V, Murray S et al (2008) Inn1 couples contraction of the actomyosin ring to membrane ingression during cytokinesis in budding yeast. Nat Cell Biol 10:395–406PubMedCrossRefGoogle Scholar
  101. 101.
    Palani S, Meitinger F, Boehm ME et al (2012) Cdc14-dependent dephosphorylation of Inn1 contributes to Inn1-Cyk3 complex formation. J Cell Sci 125:3091–3096PubMedCrossRefGoogle Scholar
  102. 102.
    Devrekanli A, Foltman M, Roncero C et al (2012) Inn1 and Cyk3 regulate chitin synthase during cytokinesis in budding yeasts. J Cell Sci 125:5453–5466PubMedCrossRefGoogle Scholar
  103. 103.
    Kuilman T, Maiolica A, Godfrey M et al (2015) Identification of Cdk targets that control cytokinesis. EMBO J 34:81–96PubMedCrossRefGoogle Scholar
  104. 104.
    Chin CF, Bennett AM, Ma WK et al (2012) Dependence of Chs2 ER export on dephosphorylation by cytoplasmic Cdc14 ensures that septum formation follows mitosis. Mol Biol Cell 23:45–58PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Pereira G, Manson C, Grindlay J et al (2002) Regulation of the Bfa1p-Bub2p complex at spindle pole bodies by the cell cycle phosphatase Cdc14p. J Cell Biol 157:367–379PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Jensen S (2002) Spatial regulation of the guanine nucleotide exchange factor Lte1 in Saccharomyces cerevisiae. J Cell Sci 115:4977–4991PubMedCrossRefGoogle Scholar
  107. 107.
    Seshan A, Bardin AJ, Amon A (2002) Control of Lte1 localization by cell polarity determinants and Cdc14. Curr Biol 12:2098–2110PubMedCrossRefGoogle Scholar
  108. 108.
    Seshan A, Amon A (2005) Ras and the Rho effector Cla4 collaborate to target and anchor Lte1 at the bud cortex. Cell Cycle 4:940–946PubMedCrossRefGoogle Scholar
  109. 109.
    Vernieri C, Chiroli E, Francia V et al (2013) Adaptation to the spindle checkpoint is regulated by the interplay between Cdc28/Clbs and PP2ACdc55. J Cell Biol 202:765–778PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PediatricsDivision of Infectious Diseases,Stanford University School of MedicineStanfordUSA
  2. 2.Cancer Epigenetics & Biology ProgramHospitalet de LlobregatBarcelonaSpain
  3. 3.Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC)SevillaSpain

Personalised recommendations