Ubiquitous Importance of Protein Glycosylation

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1503)

Abstract

More than half of all proteins are glycosylated. The attached glycans provide proteins with important structural and functional properties and glycan parts of glycoproteins have essential roles in many key biological processes. This chapter describes the effect of glycosylation on the structure and function of proteins, with emphasis on regulation of protein half-life and modulation of protein function by alternative glycosylation. In addition, this chapter highlights the importance of glycan–lectin interactions, the ability of glycans to block phosphorylation of proteins, and the importance of glycans in disease.

Key words

Glycans Protein structure Protein function Lectins Protein half-life Alternative glycosylation IgG glycosylation O-GlcNAc Glycosylation in disease 

References

  1. 1.
    Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4-8Google Scholar
  2. 2.
    Roth J (2002) Protein N-Glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 102:285–304CrossRefPubMedGoogle Scholar
  3. 3.
    Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471CrossRefPubMedGoogle Scholar
  4. 4.
    Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol Biosyst 5:1087–1104CrossRefPubMedGoogle Scholar
  5. 5.
    Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97-130.Google Scholar
  6. 6.
    Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867CrossRefPubMedGoogle Scholar
  7. 7.
    Krištić J, Zoldoš V, Lauc G (2014) Complex genetics of protein N-glycosylation. In: Endo T, Seeberger PH, Hart GW, Wong CH, Taniguchi N (eds) Glycoscience: biology and medicine. Springer, JapanGoogle Scholar
  8. 8.
    Varki A (2011) Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells. Cold Spring Harb Perspect Biol 3:a005462Google Scholar
  9. 9.
    Vogel J, Sperandio M, Pries AR, Linderkamp O, Gaehtgens P, Kuschinsky W (2000) Influence of the endothelial glycocalyx on cerebral blood flow in mice. J Cereb Blood Flow Metab 20:1571–1578CrossRefPubMedGoogle Scholar
  10. 10.
    Cohen M (2015) Notable aspects of glycan-protein interactions. Biomolecules 5:2056–2072CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Varki A, Etzler ME, Cummings RD et al (2009) Discovery and classification of glycan-binding proteins. In: Varki A, Cummings RD, Esko JD et al (eds). Essentials of glycobiology, 2nd edn. Cold Spring Harbor, New York. http://www.ncbi.nlm.nih.gov/books/NBK1923/
  12. 12.
    Cummings RD, Esko JD (2009) Principles of glycan recognition. In: Varki A, Cummings RD, Esko JD et al (eds). Essentials of glycobiology, 2nd edn. Cold Spring Harbor, New York. http://www.ncbi.nlm.nih.gov/books/NBK1950/
  13. 13.
    Nagae M, Yamaguchi Y (2015) Sugar recognition and protein-protein interaction of mammalian lectins conferring diverse functions. Curr Opin Struct Biol 34:108–115CrossRefPubMedGoogle Scholar
  14. 14.
    Bochner BS, Zimmermann N (2015) Role of siglecs and related glycan-binding proteins in immune responses and immunoregulation. J Allergy Clin Immunol 135:598–608CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sperandio M, Gleissner CA, Ley K (2009) Glycosylation in immune cell trafficking. Immunology 230:97–113CrossRefGoogle Scholar
  16. 16.
    Hirakawa J, Tsuboi K, Sato K, Kobayashi M, Watanabe S, Takakura A, Imai Y, Ito Y, Fukuda M, Kawashima H (2010) Novel anti-carbohydrate antibodies reveal the cooperative function of sulfated N- and O-glycans in lymphocyte homing. J Biol Chem 285:40864–40878CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Diekman AB (2003) Glycoconjugates in sperm function and gamete interactions: how much sugar does it take to sweet-talk the egg? Cell Mol Life Sci 60:298-308Google Scholar
  18. 18.
    Pang PC, Chiu PC, Lee CL, Chang LY, Panico M, Morris HR, Haslam SM, Khoo KH, Clark GF, Yeung WS, Dell A (2011) Human sperm binding is mediated by the Sialyl-Lewis(x) oligosaccharide on the zona pellucida. Science 333:1761–1764CrossRefPubMedGoogle Scholar
  19. 19.
    Suzuki Y (2005) Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull 28:399–408CrossRefPubMedGoogle Scholar
  20. 20.
    Hu l, Crawford SE, Czako R, Cortes-Penfield NW, Smith DF, Le Pendu J, Estes MK, Prasad BV (2012) Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485:256-259Google Scholar
  21. 21.
    Glass RI, Parashar UD, Estes MK (2009) Norovirus gastroenteritis. N Engl J Med 361:1776–1785CrossRefPubMedGoogle Scholar
  22. 22.
    Shukla D, Spear PG (2001) Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest 108:503–510CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D, Incecik ET, Berg DE, Covacci A, Engstrand L, Borén T (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–377CrossRefPubMedGoogle Scholar
  24. 24.
    Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL, Dennis JW (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–124CrossRefPubMedGoogle Scholar
  25. 25.
    Wide L, Eriksson K, Sluss PM, Hall JE (2009) Serum half-life of pituitary gonadotropins is decreased by sulfonation and increased by sialylation in women. J Clin Endocrinol Metab 94:958–964CrossRefPubMedGoogle Scholar
  26. 26.
    Becker V, Timmer J, Klingmüller U (2012) Receptor dynamics in signaling. Adv Exp Med Biol 736:313–323CrossRefPubMedGoogle Scholar
  27. 27.
    Lo WY, Lagrange AH, Hernandez CC, Harrison R, Dell A, Haslam SM, Sheehan JH, Macdonald RL (2010) Glycosylation of {beta}2 subunits regulates GABAA receptor biogenesis and channel gating. J Biol Chem 285:31348–31361CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ohtsubo K, Takamatsu S, Minowa MT, Yoshida A, Takeuchi M, Marth JD (2005) Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123:1307–1321CrossRefPubMedGoogle Scholar
  29. 29.
    Wide L, Naessén T, Sundström-Poromaa I, Eriksson K (2007) Sulfonation and sialylation of gonadotropins in women during the menstrual cycle, after menopause, and with polycystic ovarian syndrome and in men. J Clin Endocrinol Metab 92:4410–4417CrossRefPubMedGoogle Scholar
  30. 30.
    Mi Y, Lin A, Fiete D, Steirer L, Baenziger JU (2014) Modulation of mannose and asialoglycoprotein receptor expression determines glycoprotein hormone half-life at critical points in the reproductive cycle. J Biol Chem 289:12157–12167CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Egrie JC, Browne JK (2001) Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer 84:3–10CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Byrne B, Donohoe GG, O’Kennedy R (2007) Sialic acids: carbohydrate moieties that influence the biological and physical properties of biopharmaceutical proteins and living cells. Drug Discov Today 12:319–326CrossRefPubMedGoogle Scholar
  33. 33.
    Jeong YT, Choi O, Lim HR, Son YD, Kim HJ, Kim JH (2008) Enhanced sialylation of recombinant erythropoietin in CHO cells by human glycosyltransferase expression. J Microbiol Biotechnol 18:1945–1952PubMedGoogle Scholar
  34. 34.
    Su D, Zhao H, Xia H (2010) Glycosylation-modified erythropoietin with improved half-life and biological activity. Int J Hematol 91:238–244CrossRefPubMedGoogle Scholar
  35. 35.
    Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776CrossRefPubMedGoogle Scholar
  36. 36.
    Bolós V1, Grego-Bessa J, de la Pompa JL (2007) Notch signaling in development and cancer. Endocr Rev 28:339-363Google Scholar
  37. 37.
    Stanley P (2007) Regulation of Notch signaling by glycosylation. Curr Opin Struct Biol 17:530–535CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hicks C, Johnston SH, diSibio G, Collazo A, Vogt TF, Weinmaster G (2000) Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat Cell Biol 2:515–520CrossRefPubMedGoogle Scholar
  39. 39.
    Yang LT, Nichols JT, Yao C, Manilay JO, Robey EA, Weinmaster G (2005) Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell 16:927–942CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Taylor P, Takeuchi H, Sheppard D, Chillakuri C, Lea SM, Haltiwanger RS, Handford PA (2014) Fringe-mediated extension of O-linked fucose in the ligand-binding region of Notch1 increases binding to mammalian Notch ligands. Proc Natl Acad Sci U S A 111:7290–7295CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Boareto M, Jolly MK, Lu M, Onuchic JN, Clementi C, Ben-Jacob E (2015) Jagged–Delta asymmetry in Notch signaling can give rise to a Sender/Receiver hybrid phenotype. Proc Natl Acad Sci U S A 112:E402–E409CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schwab I and Nimmerjahn F (2013) Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 13:176-189Google Scholar
  43. 43.
    Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation, vol 313. Science, pp. 670–673Google Scholar
  44. 44.
    Niwa R, Hatanaka S, Shoji-Hosaka E, Sakurada M, Kobayashi Y, Uehara A, Yokoi H, Nakamura K, Shitara K (2004) Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of Fcgamma RIIIa functional polymorphism. Clin Cancer Res 10:6248–6255CrossRefPubMedGoogle Scholar
  45. 45.
    Iida S, Misaka H, Inoue M, Shibata M, Nakano R, Yamane-Ohnuki N, Wakitani M, Yano K, Shitara K, Satoh M (2006) Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcgammaRIIIa. Clin Cancer Res 12:2879–2887CrossRefPubMedGoogle Scholar
  46. 46.
    Masuda K, Kubota T, Kaneko E, Iida S, Wakitani M, Kobayashi-Natsume Y, Kubota A, Shitara K, Nakamura K (2007) Enhanced binding affinity for FcgammaRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity. Mol Immunol 44:3122–3131CrossRefPubMedGoogle Scholar
  47. 47.
    Hart GW, Akimoto Y. The O-GlcNAc modification (2009) In: Varki A, Cummings RD, Esko JD et al (eds). Essentials of glycobiology, 2nd edn. Cold Spring Harbor, New York. http://www.ncbi.nlm.nih.gov/books/NBK1954/
  48. 48.
    Hayes BK, Hart GW (1998) Protein O-GlcNAcylation: potential mechanisms for the regulation of protein function. In: Axford JS (ed) Glycoimmunology, Advances in experimental medicine and biology, vol vol 435, 2 edn. Springer, New York, pp. 85–94CrossRefGoogle Scholar
  49. 49.
    Slawson C, Hart GW (2003) Dynamic interplay between O-GlcNAc and O-phosphate: the sweet side of protein regulation. Curr Opin Struct Biol 13:631–636CrossRefPubMedGoogle Scholar
  50. 50.
    Zeidan Q, Hart GW (2010) The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J Cell Sci 123:13–22CrossRefPubMedGoogle Scholar
  51. 51.
    Cohen P (2000) The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci 25:596–601CrossRefPubMedGoogle Scholar
  52. 52.
    Whelan SA, Hart GW (2003) Proteomic approaches to analyze the dynamic relationships between nucleocytoplasmic protein glycosylation and phosphorylation. Circ Res 93:1047–1058CrossRefPubMedGoogle Scholar
  53. 53.
    Hardivillé S, Hart GW (2014) Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 20:208–213CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lewis BA (2013) O-GlcNAcylation at promoters, nutrient sensors, and transcriptional regulation. Biochim Biophys Acta 1829:1202-1206Google Scholar
  55. 55.
    Comer FI, Hart GW (2000) O-Glycosylation of nuclear and cytosolic proteins: DYNAMIC INTERPLAY BETWEEN O-GlcNAc ANDO-PHOSPHATE. J Biol Chem 275:29179–29182CrossRefPubMedGoogle Scholar
  56. 56.
    Hanover JA (2001) Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J 15:1865–1876CrossRefPubMedGoogle Scholar
  57. 57.
    Bond MR, Hanover JA (2015) A little sugar goes a long way: the cell biology of O-GlcNAc. J Cell Biol 208:869–880CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Shafi R, Iyer SP, Ellies LG, O’Donnell N, Marek KW, Chui D, Hart GW, Marth JD (2000) The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci U S A 97:5735–5739CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Marek KW, Vijay IK, Marth JD (1999) A recessive deletion in the GlcNAc-1-phosphotransferase gene results in peri-implantation embryonic lethality. Glycobiology 9:1263–1271CrossRefPubMedGoogle Scholar
  60. 60.
    Freeze HH (2001) Update and perspectives on congenital disorders of glycosylation. Glycobiology 11:129R-143RGoogle Scholar
  61. 61.
    Lauc G, Pezer M, Rudan I, Campbell H (2015) Mechanisms of disease: the human N-glycome. Biochim Biophys Acta. doi: 10.1016/j.bbagen.2015.10.016 PubMedGoogle Scholar
  62. 62.
    Stowell SR, Ju T, Cummings RD (2015) Protein glycosylation in cancer. Annu Rev Pathol 10:473–510CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Thanabalasingham G, Huffman JE, Kattla JJ, Novokmet M, Rudan I, Gloyn AL, Hayward C, Adamczyk B, Reynolds RM, Muzinic A, et al. (2013) Mutations in HNF1A result in marked alterations of plasma glycan profile. Diabetes 62:1329–1337CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Vučković F, Krištić J, Gudelj 1, Teruel M, Keser T, Pezer M, Pučić-Baković M, Štambuk J, Trbojević-Akmačić I, Barrios C et al (2015) Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol 67:2978-2989Google Scholar
  65. 65.
    Trbojević Akmačić I, Ventham NT, Theodoratou E, Vučković F, Kennedy NA, Krištić J, Nimmo ER, Kalla R, Drummond H, Štambuk J, et al. (2015) Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. Inflamm Bowel Dis 21:1237–1247PubMedPubMedCentralGoogle Scholar
  66. 66.
    Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, D. Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452-457Google Scholar
  67. 67.
    Hwang H, Zhang J, Chung KA, Leverenz JB, Zabetian CP, Peskind ER, Jankovic J, Su Z, Hancock AM, Pan C, Montine TJ, Pan S, Nutt J, Albin R, Gearing M, Beyer RP, Shi M, Zhang J (2010) Glycoproteomics in neurodegenerative diseases. Mass Spectrom Rev 29:79-125Google Scholar
  68. 68.
    Kreisman LS, Cobb BA (2012) Infection, inflammation and host carbohydrates: a Glyco-Evasion hypothesis. Glycobiology 22:1019–1030CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Huffman JE, Pučić-Baković M, Klarić L, Hennig R, Selman MH, Vučković F, Novokmet M, Krištić J, Borowiak M, Muth T, et al. (2014) Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Mol Cell Proteomics 13:1598–1610CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zoldos V, Horvat T, Lauc G (2013) Glycomics meets genomics, epigenomics and other high throughput omics for system biology studies. Curr Opin Chem Biol 17:34-40Google Scholar
  71. 71.
    Taniguchi N, Kizuka Y (2015) Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res 126:11–51CrossRefPubMedGoogle Scholar
  72. 72.
    Drake PM, Cho W, Li B, Prakobphol A, Johansen E, Anderson NL, Regnier FE, Gibson BW, Fisher SJ (2010) Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin Chem 56:223–236CrossRefPubMedGoogle Scholar
  73. 73.
    Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5:526–542CrossRefPubMedGoogle Scholar
  74. 74.
    Dube DH, Bertozzi CR (2005) Glycans in cancer and inflammation–potential for therapeutics and diagnostics. Nat Rev Drug Discov 4:477–488CrossRefPubMedGoogle Scholar
  75. 75.
    Pucic M, Knezevic A, Vidic J, Adamczyk B, Novokmet M, Polasek O, Gornik O, Supraha-Goreta S, Wormald MR, Redzic I, et al. (2011) High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics 10:M111 010090CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Knežević A, Polašek O, Gornik O, Rudan I, Campbell H, Hayward C, Wright A, Kolčić I, O’Donoghue N, Bones J, et al. (2009) Variability, heritability and environmental determinants of human plasma N-glycome. J Proteome Res 8:694–701CrossRefPubMedGoogle Scholar
  77. 77.
    Ogata S, Shimizu C, Franco A, Touma R, Kanegaye JT, Choudhury BP, Naidu NN, Kanda Y, Hoang LT, Hibberd ML, Tremoulet AH, Varki A, Burns JC (2013) Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G. PLoS One 8:e81448CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Rombouts Y, Ewing E, van de Stadt LA, Selman MH, Trouw LA, Deelder AM, Huizinga TW, Wuhrer M, van Schaardenburg D, Toes RE, Scherer HU (2013) Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann Rheum Dis. doi: 10.1136/annrheumdis-2013-203565 Google Scholar
  79. 79.
    Ackerman ME, Crispin M, Yu X, Baruah K, Boesch AW, Harvey DJ, Dugast AS, Heizen EL, Ercan A, Choi I, Streeck H, Nigrovic PA, Bailey-Kellogg C, Scanlan C, Alter G (2013) Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J Clin Invest 123:2183–2192CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ercan A, Cui J, Chatterton DE, Deane KD, Hazen MM, Brintnell W, O’Donnell CI, Derber LA, Weinblatt ME, Shadick NA, Bell DA, Cairns E, Solomon DH, Holers VM, Rudd PM, Lee DM (2010) Aberrant IgG galactosylation precedes disease onset, correlates with disease activity, and is prevalent in autoantibodies in rheumatoid arthritis. Arthritis Rheum 62:2239–2248CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Genos Glycoscience Research LaboratoryZagrebCroatia
  2. 2.Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia

Personalised recommendations