Pharmaco-Based fMRI and Neurophysiology in Non-Human Primates

  • Daniel Zaldivar
  • Nikos K. Logothetis
  • Alexander Rauch
  • Jozien Goense
Part of the Neuromethods book series (NM, volume 121)


Brain activity is continuously changing, among others reflecting the effects of neuromodulation on multiple spatial and temporal scales. By altering the input–output relationship of neural circuits, neuromodulators can also affect their energy expenditure, with concomitant effects on the hemodynamic responses. Yet, it is still unclear how to study and interpret the effects of different neuromodulators, for instance, how to differentiate their effects from underlying behavior- or stimulus-driven activity. Gaining insights into neuromodulatory processes is largely hampered by the lack of approaches providing information concurrently at different spatio-temporal scales. Here, we provide an overview of the multimodal approach consisting of functional magnetic resonance imaging (fMRI), pharmacology and neurophysiology, which we developed to elucidate causal relationships between neuromodulation and neurovascular coupling in visual cortex of anesthetized macaques.

Key words

Non-human primate (NHP) Functional magnetic resonance imaging (fMRI) Primary visual cortex (V1) Neurophysiology Blood-oxygen-level-dependent (BOLD) signal Cerebral blood flow (CBF) Pharmaco-fMRI (phMRI) Neuromodulation Intracortical pharmacology Systemic pharmacology 



Thanks to Dr. Andre Marreiros for critical comments on the manuscript and discussion. This work was supported by the Max Planck Society.


  1. 1.
    Yuste R (2015) From the neuron doctrine to neural networks. Nat Rev Neurosci 16:487–497CrossRefPubMedGoogle Scholar
  2. 2.
    Dayan P (2012) Twenty-five lessons from computational neuromodulation. Neuron 76:240–256CrossRefPubMedGoogle Scholar
  3. 3.
    Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878CrossRefPubMedGoogle Scholar
  4. 4.
    Boynton GM (2011) Spikes, BOLD, attention, and awareness: a comparison of electrophysiological and fMRI signals in V1. J Vis 11:1–16CrossRefGoogle Scholar
  5. 5.
    Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157CrossRefPubMedGoogle Scholar
  6. 6.
    Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18:631–640CrossRefPubMedGoogle Scholar
  8. 8.
    Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis NK (2012) The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J Neurosci 32:1395–1407CrossRefPubMedGoogle Scholar
  9. 9.
    Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577CrossRefPubMedGoogle Scholar
  10. 10.
    Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim DS, Fenno LE, Ramakrishnan C, Deisseroth K (2010) Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465:788–792CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Logothetis NK (2010) Bold claims for optogenetics. Nature 468:E3–E4CrossRefPubMedGoogle Scholar
  12. 12.
    Izpisua Belmonte JC, Callaway EM, Caddick SJ, Churchland P, Feng G, Homanics GE, Lee KF, Leopold DA, Miller CT, Mitchell JF, Mitalipov S, Moutri AR, Movshon JA, Okano H, Reynolds JH, Ringach D, Sejnowski TJ, Silva AC, Strick PL, Wu J, Zhang F (2015) Brains, genes, and primates. Neuron 86:617–631CrossRefPubMedGoogle Scholar
  13. 13.
    Zaldivar D, Rauch A, Whittingstall K, Logothetis NK, Goense J (2014) Dopamine-induced dissociation of BOLD and neural activity in macaque visual cortex. Curr Biol 24:2805–2811CrossRefPubMedGoogle Scholar
  14. 14.
    Rauch A, Rainer G, Logothetis NK (2008) The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci U S A 105:6759–6764CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rauch A, Rainer G, Augath M, Oeltermann A, Logothetis NK (2008) Pharmacological MRI combined with electrophysiology in non-human primates: effects of Lidocaine on primary visual cortex. Neuroimage 40:590–600CrossRefPubMedGoogle Scholar
  16. 16.
    Gozzi A, Large CH, Schwarz A, Bertani S, Crestan V, Bifone A (2008) Differential effects of antipsychotic and glutamatergic agents on the phMRI response to phencyclidine. Neuropsychopharmacology 33:1690–1703CrossRefPubMedGoogle Scholar
  17. 17.
    Gsell W, Burke M, Wiedermann D, Bonvento G, Silva AC, Dauphin F, Buhrle C, Hoehn M, Schwindt W (2006) Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat. J Neurosci 26:8409–8416CrossRefPubMedGoogle Scholar
  18. 18.
    Hillman EM (2014) Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci 37:161–181CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hamel EJ, Grewe BF, Parker JG, Schnitzer MJ (2015) Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 86:140–159CrossRefPubMedGoogle Scholar
  20. 20.
    Honey G, Bullmore E (2004) Human pharmacological MRI. Trends Pharmacol Sci 25:366–374CrossRefPubMedGoogle Scholar
  21. 21.
    Marder E, O’Leary T, Shruti S (2014) Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annu Rev Neurosci 37:329–346CrossRefPubMedGoogle Scholar
  22. 22.
    Clapham DE (1994) Direct G protein activation of ion channels? Annu Rev Neurosci 17:441–464CrossRefPubMedGoogle Scholar
  23. 23.
    Logothetis NK, Augath M, Murayama Y, Rauch A, Sultan F, Goense J, Oeltermann A, Merkle H (2010) The effects of electrical microstimulation on cortical signal propagation. Nat Neurosci 13:1283–1291CrossRefPubMedGoogle Scholar
  24. 24.
    Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logothetis NK, Panzeri S (2008) Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J Neurosci 28:5696–5709CrossRefPubMedGoogle Scholar
  25. 25.
    Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14:770–785CrossRefPubMedGoogle Scholar
  26. 26.
    Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100PubMedGoogle Scholar
  27. 27.
    Mitzdorf U (1987) Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. Int J Neurosci 33:33–59CrossRefPubMedGoogle Scholar
  28. 28.
    Whittingstall K, Logothetis NK (2009) Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64:281–289CrossRefPubMedGoogle Scholar
  29. 29.
    Coenen AM (1995) Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking: implications for information processing. Neurosci Biobehav Rev 19:447–463CrossRefPubMedGoogle Scholar
  30. 30.
    Nunez PL (ed) (1981) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, OxfordGoogle Scholar
  31. 31.
    Magri C, Mazzoni A, Logothetis NK, Panzeri S (2012) Optimal band separation of extracellular field potentials. J Neurosci Methods 210:66–78CrossRefPubMedGoogle Scholar
  32. 32.
    Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29:13–26CrossRefPubMedGoogle Scholar
  33. 33.
    Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916CrossRefPubMedGoogle Scholar
  34. 34.
    Kadekaro M, Crane AM, Sokoloff L (1985) Differential-effects of electrical-stimulation of sciatic-nerve on metabolic-activity in spinal-cord and dorsal-root ganglion in the rat. Proc Natl Acad Sci U S A 82:6010–6013CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kadekaro M, Vance WH, Terrell ML, Gary H, Eisenberg HM, Sokoloff L (1987) Effects of antidromic stimulation of the ventral root on glucose-utilization in the ventral horn of the spinal-cord in the rat. Proc Natl Acad Sci U S A 84:5492–5495CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Di Rocco RJ, Kageyama GH, Wong-Riley MT (1989) The relationship between CNS metabolism and cytoarchitecture: a review of 14C-deoxyglucose studies with correlation to cytochrome oxidase histochemistry. Comput Med Imaging Graph 13:81–92CrossRefPubMedGoogle Scholar
  37. 37.
    Kageyama GH, Wong-Riley M (1986) Laminar and cellular localization of cytochrome oxidase in the cat striate cortex. J Comp Neurol 245:137–159CrossRefPubMedGoogle Scholar
  38. 38.
    Oeltermann A, Augath MA, Logothetis NK (2007) Simultaneous recording of neuronal signals and functional NMR imaging. Magn Reson Imaging 25:760–774CrossRefPubMedGoogle Scholar
  39. 39.
    Arsenault JT, Nelissen K, Jarraya B, Vanduffel W (2013) Dopaminergic reward signals selectively decrease fMRI activity in primate visual cortex. Neuron 77:1174–1186CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Siegelbaum SA, Tsien RW (1983) Modulation of gated ion channels as a mode of transmitter action. Trends Neurosci 6:307–313CrossRefGoogle Scholar
  41. 41.
    Hirsch JA, Wang X, Sommer FT, Martinez LM (2015) How inhibitory circuits in the thalamus serve vision. Annu Rev Neurosci 38:309–329CrossRefPubMedGoogle Scholar
  42. 42.
    Rao VR, Finkbeiner S (2007) NMDA and AMPA receptors: old channels, new tricks. Trends Neurosci 30:284–291CrossRefPubMedGoogle Scholar
  43. 43.
    Douglas RJ, Martin KA (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451CrossRefPubMedGoogle Scholar
  44. 44.
    Kujala J, Jung J, Bouvard S, Lecaignard F, Lothe A, Bouet R, Ciumas C, Ryvlin P, Jerbi K (2015) Gamma oscillations in V1 are correlated with GABAA receptor density: a multi-modal MEG and Flumazenil-PET study. Sci Rep 5:16347CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sengupta B, Laughlin SB, Niven JE (2014) Consequences of converting graded to action potentials upon neural information coding and energy efficiency. PLoS Comput Biol 10:e1003439CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145CrossRefPubMedGoogle Scholar
  47. 47.
    Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67:1–27CrossRefPubMedGoogle Scholar
  48. 48.
    Mitterschiffthaler MT, Ettinger U, Mehta MA, Mataix-Cols D, Williams SC (2006) Applications of functional magnetic resonance imaging in psychiatry. J Magn Reson Imaging 23:851–861CrossRefPubMedGoogle Scholar
  49. 49.
    Schwarz AJ, Gozzi A, Reese T, Bifone A (2007) In vivo mapping of functional connectivity in neurotransmitter systems using pharmacological MRI. Neuroimage 34:1627–1636CrossRefPubMedGoogle Scholar
  50. 50.
    Sperling R, Greve D, Dale A, Killiany R, Holmes J, Rosas HD, Cocchiarella A, Firth P, Rosen B, Lake S, Lange N, Routledge C, Albert M (2002) Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci U S A 99:455–460CrossRefPubMedGoogle Scholar
  51. 51.
    Loubinoux I, Pariente J, Boulanouar K, Carel C, Manelfe C, Rascol O, Celsis P, Chollet F (2002) A single dose of the serotonin neurotransmission agonist paroxetine enhances motor output: double-blind, placebo-controlled, fMRI study in healthy subjects. Neuroimage 15:26–36CrossRefPubMedGoogle Scholar
  52. 52.
    Noudoost B, Moore T (2011) Control of visual cortical signals by prefrontal dopamine. Nature 474:372–375CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chen Z, Silva AC, Yang J, Shen J (2005) Elevated endogenous GABA level correlates with decreased fMRI signals in the rat brain during acute inhibition of GABA transaminase. J Neurosci Res 79:383–391CrossRefPubMedGoogle Scholar
  54. 54.
    Reese T, Bjelke B, Porszasz R, Baumann D, Bochelen D, Sauter A, Rudin M (2000) Regional brain activation by bicuculline visualized by functional magnetic resonance imaging. Time-resolved assessment of bicuculline-induced changes in local cerebral blood volume using an intravascular contrast agent. NMR Biomed 13:43–49CrossRefPubMedGoogle Scholar
  55. 55.
    Kalisch R, Salome N, Platzer S, Wigger A, Czisch M, Sommer W, Singewald N, Heilig M, Berthele A, Holsboer F, Landgraf R, Auer DP (2004) High trait anxiety and hyporeactivity to stress of the dorsomedial prefrontal cortex: a combined phMRI and Fos study in rats. Neuroimage 23:382–391CrossRefPubMedGoogle Scholar
  56. 56.
    Kida I, Hyder F, Behar KL (2001) Inhibition of voltage-dependent sodium channels suppresses the functional magnetic resonance imaging response to forepaw somatosensory activation in the rodent. J Cereb Blood Flow Metab 21:585–591CrossRefPubMedGoogle Scholar
  57. 57.
    Kida I, Smith AJ, Blumenfeld H, Behar KL, Hyder F (2006) Lamotrigine suppresses neurophysiological responses to somatosensory stimulation in the rodent. Neuroimage 29:216–224CrossRefPubMedGoogle Scholar
  58. 58.
    Faraci FM, Breese KR (1993) Nitric oxide mediates vasodilatation in response to activation of N-methyl-D-aspartate receptors in brain. Circ Res 72:476–480CrossRefPubMedGoogle Scholar
  59. 59.
    Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50CrossRefPubMedGoogle Scholar
  60. 60.
    Gozzi A, Schwarz AJ, Reese T, Crestan V, Bertani S, Turrini G, Corsi M, Bifone A (2005) Functional magnetic resonance mapping of intracerebroventricular infusion of a neuroactive peptide in the anaesthetised rat. J Neurosci Methods 142:115–124CrossRefPubMedGoogle Scholar
  61. 61.
    Rajalingham R, Schmidt K, DiCarlo JJ (2015) Comparison of object recognition behavior in human and monkey. J Neurosci 35:12127–12136CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Buckner RL, Krienen FM (2013) The evolution of distributed association networks in the human brain. Trends Cogn Sci 17:648–665CrossRefPubMedGoogle Scholar
  63. 63.
    Mantini D, Corbetta M, Romani GL, Orban GA, Vanduffel W (2013) Evolutionarily novel functional networks in the human brain? J Neurosci 33:3259–3275CrossRefPubMedGoogle Scholar
  64. 64.
    Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH (2010) Neuron densities vary across and within cortical areas in primates. Proc Natl Acad Sci U S A 107:15927–15932CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Carlo CN, Stevens CF (2013) Structural uniformity of neocortex, revisited. Proc Natl Acad Sci U S A 110:1488–1493CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    von Pföstl V, Li J, Zaldivar D, Goense J, Zhang X, Serr N, Logothetis NK, Rauch A (2012) Effects of lactate on the early visual cortex of non-human primates, investigated by pharmaco-MRI and neurochemical analysis. Neuroimage 61:98–105Google Scholar
  67. 67.
    Callaway EM (1998) Local circuits in primary visual cortex of the macaque monkey. Annu Rev Neurosci 21:47–74CrossRefPubMedGoogle Scholar
  68. 68.
    Pfeuffer J, Merkle H, Beyerlein M, Steudel T, Logothetis NK (2004) Anatomical and functional MR imaging in the macaque monkey using a vertical large-bore 7 Tesla setup. Magn Reson Imaging 22:1343–1359CrossRefPubMedGoogle Scholar
  69. 69.
    Logothetis NK, Guggenberger H, Peled S, Pauls J (1999) Functional imaging of the monkey brain. Nat Neurosci 2:555–562CrossRefPubMedGoogle Scholar
  70. 70.
    Goense J, Logothetis NK, Merkle H (2010) Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys. Magn Reson Imaging 28:1183–1191CrossRefPubMedGoogle Scholar
  71. 71.
    Ku SP, Tolias AS, Logothetis NK, Goense J (2011) fMRI of the face-processing network in the ventral temporal lobe of awake and anesthetized macaques. Neuron 70:352–362CrossRefPubMedGoogle Scholar
  72. 72.
    Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301CrossRefPubMedGoogle Scholar
  73. 73.
    Goense J, Merkle H, Logothetis NK (2012) High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron 76:629–639CrossRefPubMedGoogle Scholar
  74. 74.
    Murayama Y, Biessmann F, Meinecke FC, Muller KR, Augath M, Oeltermann A, Logothetis NK (2010) Relationship between neural and hemodynamic signals during spontaneous activity studied with temporal kernel CCA. Magn Reson Imaging 28:1095–1103CrossRefPubMedGoogle Scholar
  75. 75.
    Einevoll GT, Pettersen KH, Devor A, Ulbert I, Halgren E, Dale AM (2007) Laminar population analysis: estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. J Neurophysiol 97:2174–2190CrossRefPubMedGoogle Scholar
  76. 76.
    Michels L, Bucher K, Luchinger R, Klaver P, Martin E, Jeanmonod D, Brandeis D (2010) Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PLoS One 5:e10298CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    de Lafuente V, Romo R (2011) Dopamine neurons code subjective sensory experience and uncertainty of perceptual decisions. Proc Natl Acad Sci U S A 108:19767–19771CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kwak Y, Peltier SJ, Bohnen NI, Muller ML, Dayalu P, Seidler RD (2012) L-DOPA changes spontaneous low-frequency BOLD signal oscillations in Parkinson’s disease: a resting state fMRI study. Front Syst Neurosci 6:1–15CrossRefGoogle Scholar
  79. 79.
    Black KJ, Carl JL, Hartlein JM, Warren SL, Hershey T, Perlmutter JS (2003) Rapid intravenous loading of levodopa for human research: clinical results. J Neurosci Methods 127:19–29CrossRefPubMedGoogle Scholar
  80. 80.
    Reader TA (1978) The effects of dopamine, noradrenaline and serotonin in the visual cortex of the cat. Experientia 34:1586–1588CrossRefPubMedGoogle Scholar
  81. 81.
    Gottberg E, Montreuil B, Reader TA (1988) Acute effects of lithium on dopaminergic responses: iontophoretic studies in the rat visual cortex. Synapse 2:442–449CrossRefPubMedGoogle Scholar
  82. 82.
    Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40:657–671CrossRefPubMedGoogle Scholar
  83. 83.
    Maier A, Adams GK, Aura C, Leopold DA (2010) Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. Front Syst Neurosci 4:31PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Max Planck Institute for Biological CyberneticsTübingenGermany
  2. 2.IMPRS for Cognitive and Systems NeuroscienceUniversity of TübingenTübingenGermany
  3. 3.Division of Imaging Science and Biomedical EngineeringUniversity of ManchesterManchesterUK
  4. 4.University Hospital of PsychiatryUniversity of BernBernSwitzerland
  5. 5.Institute of Neuroscience and PsychologyUniversity of GlasgowGlasgowUK

Personalised recommendations