Self-Replicating RNA Vaccine Delivery to Dendritic Cells

  • Thomas DémoulinsEmail author
  • Pavlos C. Englezou
  • Panagiota Milona
  • Nicolas Ruggli
  • Nicola Tirelli
  • Chantal Pichon
  • Cédric Sapet
  • Thomas Ebensen
  • Carlos A. Guzmán
  • Kenneth C. McCullough
Part of the Methods in Molecular Biology book series (MIMB, volume 1499)


Most current vaccines are either inactivated pathogen-derived or protein/peptide-based, although attenuated and vector vaccines have also been developed. The former induce at best moderate protection, even as multimeric antigen, due to limitations in antigen loads and therefore capacity for inducing robust immune defense. While attenuated and vector vaccines offer advantages through their replicative nature, drawbacks and risks remain with potential reversion to virulence and interference from preexisting immunity. New advances averting these problems are combining self-amplifying replicon RNA (RepRNA) technology with nanotechnology. RepRNA are large self-replicating RNA molecules (12–15 kb) derived from viral genomes defective in at least one structural protein gene. They provide sustained antigen production, effectively increasing vaccine antigen payloads over time, without the risk of producing infectious progeny. The major limitation with RepRNA is RNase-sensitivity and inefficient uptake by dendritic cells (DCs)—absolute requirements for efficacious vaccine design. We employed biodegradable delivery vehicles to protect the RepRNA and promote DC delivery. Encapsulating RepRNA into chitosan nanoparticles, as well as condensing RepRNA with polyethylenimine (PEI), cationic lipids, or chitosans, has proven effective for delivery to DCs and induction of immune responses in vivo.


Replicon-RNA Self-replicating vaccine Universal influenza vaccine Dendritic cell delivery Chitosan nanoparticles Polyplexes Cationic lipids 



We thank Markus Gerber and Samira Locher for their help and input with the RepRNA technology, and Brigitte Herrmann for helping with the DC studies. We are also grateful to Patrick Midoux and Laure Magrangeas-Janot for help with the polyplex technology, Olivier Zelphati and Florent Poulhes for help with the lipoplex technology, and Kai Schulze for the adaptive immune response profiling. The work was funded by the Marie Curie IAPP Project Replixcel (251420) and the EU FP7 Project UniVax (HEALTH-F3-2013-60173).


  1. 1.
    Atkins GJ, Fleeton MN, Sheahan BJ (2008) Therapeutic and prophylactic applications of alphavirus vectors. Expert Rev Mol Med 10:e33CrossRefPubMedGoogle Scholar
  2. 2.
    Khromykh AA (2000) Replicon-based vectors of positive strand RNA viruses. Curr Opin Mol Ther 2:555–569PubMedGoogle Scholar
  3. 3.
    Ljungberg K, Liljestrom P (2015) Self-replicating alphavirus RNA vaccines. Expert Rev Vaccines 14:177–194CrossRefPubMedGoogle Scholar
  4. 4.
    Lundstrom K (2002) Alphavirus-based vaccines. Curr Opin Mol Ther 4:28–34PubMedGoogle Scholar
  5. 5.
    McCullough KC, Bassi I, Démoulins T, Thomann-Harwood LJ, Ruggli N (2012) Functional RNA delivery targeted to dendritic cells by synthetic nanoparticles. Ther Deliv 3:1077–1099CrossRefPubMedGoogle Scholar
  6. 6.
    Pijlman GP, Suhrbier A, Khromykh AA (2006) Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opin Biol Ther 6:135–145CrossRefPubMedGoogle Scholar
  7. 7.
    Rayner JO, Dryga SA, Kamrud KI (2002) Alphavirus vectors and vaccination. Rev Med Virol 12:279–296CrossRefPubMedGoogle Scholar
  8. 8.
    Frey CF, Bauhofer O, Ruggli N, Summerfield A, Hofmann MA, Tratschin JD (2006) Classical swine fever virus replicon particles lacking the Erns gene: a potential marker vaccine for intradermal application. Vet Res 37:655–670CrossRefPubMedGoogle Scholar
  9. 9.
    Maurer R, Stettler P, Ruggli N, Hofmann MA, Tratschin JD (2005) Oronasal vaccination with classical swine fever virus (CSFV) replicon particles with either partial or complete deletion of the E2 gene induces partial protection against lethal challenge with highly virulent CSFV. Vaccine 23:3318–3328CrossRefPubMedGoogle Scholar
  10. 10.
    Moser C, Stettler P, Tratschin JD, Hofmann MA (1999) Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. J Virol 73:7787–7794PubMedPubMedCentralGoogle Scholar
  11. 11.
    Suter R, Summerfield A, Thomann-Harwood LJ, McCullough KC, Tratschin JD, Ruggli N (2011) Immunogenic and replicative properties of classical swine fever virus replicon particles modified to induce IFN-alpha/beta and carry foreign genes. Vaccine 29:1491–1503CrossRefPubMedGoogle Scholar
  12. 12.
    Démoulins T, Milona P, Englezou PC, Ebensen T, Schulze K, Suter R, Pichon C, Midoux P, Guzman CA, Ruggli N, McCullough KC (2016) Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines. Nanomedicine 12(3):711–722PubMedGoogle Scholar
  13. 13.
    McCullough KC, Bassi I, Milona P, Suter R, Thomann-Harwood L, Englezou P, Démoulins T, Ruggli N (2014) Self-replicating replicon-RNA delivery to dendritic cells by chitosan-nanoparticles for translation in vitro and in vivo. Mol Ther Nucleic Acids 3:e173CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tratschin JD, Ruggli N, McCullough KC (2008) Pestivirus replicons providing an RNA-based viral vector system. PCT/EP2009/003892 WO 2009146867Google Scholar
  15. 15.
    McCullough KC, Milona P, Démoulins T, Englezou P, Ruggli N (2015) Dendritic cell targets for self-replicating RNA vaccines. J Blood Lymph 5:132. doi: 10.4172/2165-7831.1000132 Google Scholar
  16. 16.
    McCullough KC, Milona P, Thomann-Harwood L, Démoulins T, Englezou P, Suter R, Ruggli N (2014) Self-amplifying replicon RNA vaccine delivery to dendritic cells by synthetic nanoparticles. Vaccines 2:735–754CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811CrossRefPubMedGoogle Scholar
  18. 18.
    Medzhitov R, Janeway C Jr (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97CrossRefPubMedGoogle Scholar
  19. 19.
    Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255–258CrossRefPubMedGoogle Scholar
  20. 20.
    Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296CrossRefPubMedGoogle Scholar
  21. 21.
    Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22CrossRefPubMedGoogle Scholar
  22. 22.
    Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58PubMedGoogle Scholar
  23. 23.
    Summerfield A, Horn MP, Lozano G, Carrasco CP, Atze K, McCullough K (2003) C-kit positive porcine bone marrow progenitor cells identified and enriched using recombinant stem cell factor. J Immunol Methods 280:113–123CrossRefPubMedGoogle Scholar
  24. 24.
    Carrasco CP, Rigden RC, Schaffner R, Gerber H, Neuhaus V, Inumaru S, Takamatsu H, Bertoni G, McCullough KC, Summerfield A (2001) Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology 104:175–184CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kasza L, Shadduck JA, Christofinis GJ (1972) Establishment, viral susceptibility and biological characteristics of a swine kidney cell line SK-6. Res Vet Sci 13:46–51PubMedGoogle Scholar
  26. 26.
    Ruggli N, Tratschin JD, Mittelholzer C, Hofmann MA (1996) Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol 70:3478–3487PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ruggli N, Summerfield A, Fiebach AR, Guzylack-Piriou L, Bauhofer O, Lamm CG, Waltersperger S, Matsuno K, Liu L, Gerber M, Choi KH, Hofmann MA, Sakoda Y, Tratschin JD (2009) Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro. J Virol 83:817–829CrossRefPubMedGoogle Scholar
  28. 28.
    Ruggli N, Tratschin JD, Schweizer M, McCullough KC, Hofmann MA, Summerfield A (2003) Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of N(pro). J Virol 77:7645–7654CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mayer D, Hofmann MA, Tratschin JD (2004) Attenuation of classical swine fever virus by deletion of the viral N(pro) gene. Vaccine 22:317–328CrossRefPubMedGoogle Scholar
  30. 30.
    Lorenz RJ, Bogel K (1973) Laboratory techniques in rabies: methods of calculation. Monograph series. World Health Organization 23(23):321–335Google Scholar
  31. 31.
    Bertrand E, Goncalves C, Billiet L, Gomez JP, Pichon C, Cheradame H, Midoux P, Guegan P (2011) Histidinylated linear PEI: a new efficient non-toxic polymer for gene transfer. Chem Commun (Camb) 47:12547–12549CrossRefGoogle Scholar
  32. 32.
    Sharma R, Ghasparian A, Robinson JA, McCullough KC (2012) Synthetic virus-like particles target dendritic cell lipid rafts for rapid endocytosis primarily but not exclusively by macropinocytosis. PLoS One 7:e43248CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Python S, Gerber M, Suter R, Ruggli N, Summerfield A (2013) Efficient sensing of infected cells in absence of virus particles by plasmacytoid dendritic cells is blocked by the viral ribonuclease E(rns.). PLoS Pathog 9:e1003412CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Démoulins T, Bassi I, Thomann-Harwood L, Jandus C, Kaeuper P, Simon HU, von Gunten S, McCullough KC (2013) Alginate-coated chitosan nanogel capacity to modulate the effect of TLR ligands on blood dendritic cells. Nanomedicine 9:806–817PubMedGoogle Scholar
  35. 35.
    Démoulins T, Milona P, McCullough KC (2014) Alginate-coated chitosan nanogels differentially modulate class-A and class-B CpG-ODN targeting of dendritic cells and intracellular delivery. Nanomedicine 10:1739–1749PubMedGoogle Scholar
  36. 36.
    Thomann-Harwood LJ, Kaeuper P, Rossi N, Milona P, Herrmann B, McCullough KC (2013) Nanogel vaccines targeting dendritic cells: contributions of the surface decoration and vaccine cargo on cell targeting and activation. J Control Release 166:95–105CrossRefPubMedGoogle Scholar
  37. 37.
    Liniger M, Summerfield A, Zimmer G, McCullough KC, Ruggli N (2012) Chicken cells sense influenza A virus infection through MDA5 and CARDIF signaling involving LGP2. J Virol 86:705–717CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mittal A, Schulze K, Ebensen T, Weissmann S, Hansen S, Guzman CA, Lehr CM (2015) Inverse micellar sugar glass (IMSG) nanoparticles for transfollicular vaccination. J Control Release 206:140–152CrossRefPubMedGoogle Scholar
  39. 39.
    Mittal A, Schulze K, Ebensen T, Weissmann S, Hansen S, Lehr CM, Guzman CA (2015) Efficient nanoparticle-mediated needle-free transcutaneous vaccination via hair follicles requires adjuvantation. Nanomedicine 11:147–154PubMedGoogle Scholar
  40. 40.
    Rharbaoui F, Drabner B, Borsutzky S, Winckler U, Morr M, Ensoli B, Muhlradt PF, Guzman CA (2002) The Mycoplasma-derived lipopeptide MALP-2 is a potent mucosal adjuvant. Eur J Immunol 32:2857–2865CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Thomas Démoulins
    • 1
    Email author
  • Pavlos C. Englezou
    • 1
  • Panagiota Milona
    • 1
  • Nicolas Ruggli
    • 1
  • Nicola Tirelli
    • 2
  • Chantal Pichon
    • 3
  • Cédric Sapet
    • 4
  • Thomas Ebensen
    • 5
  • Carlos A. Guzmán
    • 5
  • Kenneth C. McCullough
    • 1
  1. 1.Institute of Virology and Immunology (IVI)MittelhäusernSwitzerland
  2. 2.Centre of Regenerative MedicineUniversity of ManchesterManchesterUK
  3. 3.Centre de Biophysique MoléculaireCNRS UPR4301Orléans cedex 2France
  4. 4.OzBiosciencesParc scientifique de LuminyMarseilleFrance
  5. 5.Department of Vaccinology and Applied MicrobiologyHelmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations