RNA Vaccines pp 223-236 | Cite as

Discovery and Subtyping of Neo-Epitope Specific T-Cell Responses for Cancer Immunotherapy: Addressing the Mutanome

  • Mustafa Diken
  • Mathias Vormehr
  • Christian Grunwitz
  • Sebastian Kreiter
  • Özlem Türeci
  • Ugur Sahin
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1499)

Abstract

Cancer accumulates 10s to 1000s of genomic mutations of which a fraction is immunogenic and may serve as an Achilles’ heel of tumor cells. Mutation-specific T cells can recognize these antigens and destroy malignant cells. Strategies to immunotherapeutically address individual tumor mutations employing peptide or mRNA based vaccines are now actively investigated in mice and humans. An important step of determining the therapeutic potential of a mutanome vaccine is the detection of mutation reactive T-cell responses. In this chapter we provide protocols to identify and subtype mutation specific T cells in mice based on IFN-γ ELISpot and flow cytometry.

Keywords

mRNA Neo-epitopes Detection and subtyping of CD4+ and CD8+ T-cell responses 

References

  1. 1.
    Gross L (1943) Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res 3:326–333Google Scholar
  2. 2.
    Coulie PG, Van den Eynde BJ, van der Bruggen P et al (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14:135–146CrossRefPubMedGoogle Scholar
  3. 3.
    Melero I, Gaudernack G, Gerritsen W et al (2014) Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 11:509–524CrossRefPubMedGoogle Scholar
  4. 4.
    Boon T, Kellermann O (1977) Rejection by syngeneic mice of cell variants obtained by mutagenesis of a malignant teratocarcinoma cell line. Proc Natl Acad Sci U S A 74:272–275CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wölfel T, Hauer M, Schneider J et al (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–1284CrossRefPubMedGoogle Scholar
  6. 6.
    Brown SD, Warren RL, Gibb EA et al (2014) Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res 24:743–750CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tran E, Turcotte S, Gros A et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344:641–645CrossRefPubMedGoogle Scholar
  8. 8.
    Van Rooij N, Van Buuren MM, Philips D et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31:e439–e442CrossRefPubMedGoogle Scholar
  9. 9.
    Robbins PF, Lu Y-C, El-Gamil M et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19:747–752CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lu Y-C, Yao X, Li YF et al (2013) Mutated PPP1R3B is recognized by T cells used to treat a melanoma patient who experienced a durable complete tumor regression. J Immunol 190:6034–6042CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Van Allen EM, Miao D, Schilling B et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–211CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rizvi NA, Hellmann MD, Snyder A et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Snyder A, Makarov V, Merghoub T et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Carbone DP, Ciernik IF, Kelley MJ et al (2005) Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. J Clin Oncol 23:5099–5107CrossRefPubMedGoogle Scholar
  15. 15.
    Castle JC, Kreiter S, Diekmann J et al (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72:1081–1091CrossRefPubMedGoogle Scholar
  16. 16.
    Kreiter S, Vormehr M, van de Roemer N et al (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:692–696CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics - developing a new class of drugs. Nat Rev Drug Discov 13:759–780CrossRefPubMedGoogle Scholar
  18. 18.
    Holtkamp S, Kreiter S, Selmi A et al (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108:4009–4017CrossRefPubMedGoogle Scholar
  19. 19.
    Kuhn AN, Diken M, Kreiter S et al (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 17:961–971CrossRefPubMedGoogle Scholar
  20. 20.
    Kreiter S, Selmi A, Diken M et al (2008) Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol 180:309–318CrossRefPubMedGoogle Scholar
  21. 21.
    Lutz MB, Kukutsch N, Ogilvie AL et al (1999) An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods 223:77–92CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mustafa Diken
    • 1
    • 2
  • Mathias Vormehr
    • 2
    • 3
  • Christian Grunwitz
    • 2
    • 3
  • Sebastian Kreiter
    • 1
    • 2
  • Özlem Türeci
    • 1
  • Ugur Sahin
    • 1
    • 2
    • 3
  1. 1.TRON – Translational Oncology at the University Medical CenterJohannes Gutenberg UniversityMainzGermany
  2. 2.Biopharmaceutical New Technologies (BioNTech) CorporationMainzGermany
  3. 3.Research Center for Immunotherapy (FZI)MainzGermany

Personalised recommendations