Advertisement

Lineage Tracing of Mammary Stem and Progenitor Cells

  • Anoeska A. A. van de Moosdijk
  • Nai Yang Fu
  • Anne C. Rios
  • Jane E. Visvader
  • Renée van Amerongen
Part of the Methods in Molecular Biology book series (MIMB, volume 1501)

Abstract

Lineage tracing analysis allows mammary epithelial cells to be tracked in their natural environment, thereby revealing cell fate and proliferation choices in the intact tissue. This technique is particularly informative for studying how stem cells build and maintain the mammary epithelium during development and pregnancy. Here we describe two experimental systems based on Cre/loxP technology (CreERT2/loxP and rtTA/tetO-Cre/loxP), which allow the inducible, permanent labeling of mammary epithelial cells following the administration of either tamoxifen or doxycycline.

Key words

Mouse Mammary gland Lineage tracing Cre CreERT2 loxP rtTA tetO Tamoxifen Doxycycline 

References

  1. 1.
    Deome KB, Faulkin LJ Jr, Bern HA, Blair PB (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19(5):515–520PubMedGoogle Scholar
  2. 2.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439(7072):84–88. doi: 10.1038/nature04372 CrossRefPubMedGoogle Scholar
  3. 3.
    Visvader JE, Stingl J (2014) Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev 28(11):1143–1158. doi: 10.1101/gad.242511.114 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439(7079):993–997. doi: 10.1038/nature04496 PubMedGoogle Scholar
  5. 5.
    Smalley MJ, Kendrick H, Sheridan JM, Regan JL, Prater MD, Lindeman GJ, Watson CJ, Visvader JE, Stingl J (2012) Isolation of mouse mammary epithelial subpopulations: a comparison of leading methods. J Mammary Gland Biol Neoplasia 17(2):91–97. doi: 10.1007/s10911-012-9257-1 CrossRefPubMedGoogle Scholar
  6. 6.
    Smalley MJ (2010) Isolation, culture and analysis of mouse mammary epithelial cells. Methods Mol Biol 633:139–170. doi: 10.1007/978-1-59745-019-5_11 CrossRefPubMedGoogle Scholar
  7. 7.
    Sleeman KE, Kendrick H, Ashworth A, Isacke CM, Smalley MJ (2006) CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 8(1):R7. doi: 10.1186/bcr1371 CrossRefPubMedGoogle Scholar
  8. 8.
    Prater M, Shehata M, Watson CJ, Stingl J (2013) Enzymatic dissociation, flow cytometric analysis, and culture of normal mouse mammary tissue. Methods Mol Biol 946:395–409. doi: 10.1007/978-1-62703-128-8_25 CrossRefPubMedGoogle Scholar
  9. 9.
    Rios AC, Fu NY, Lindeman GJ, Visvader JE (2014) In situ identification of bipotent stem cells in the mammary gland. Nature 506(7488):322–327. doi: 10.1038/nature12948 CrossRefPubMedGoogle Scholar
  10. 10.
    van Amerongen R, Bowman AN, Nusse R (2012) Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11(3):387–400. doi: 10.1016/j.stem.2012.05.023 CrossRefPubMedGoogle Scholar
  11. 11.
    Wang D, Cai C, Dong X, Yu QC, Zhang XO, Yang L, Zeng YA (2014) Identification of multipotent mammary stem cells by protein C receptor expression. Nature. doi: 10.1038/nature13851 Google Scholar
  12. 12.
    Prater MD, Petit V, Alasdair Russell I, Giraddi RR, Shehata M, Menon S, Schulte R, Kalajzic I, Rath N, Olson MF, Metzger D, Faraldo MM, Deugnier MA, Glukhova MA, Stingl J (2014) Mammary stem cells have myoepithelial cell properties. Nat Cell Biol 16(10):942–950. doi: 10.1038/ncb3025, 941-947CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sale S, Lafkas D, Artavanis-Tsakonas S (2013) Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages. Nat Cell Biol 15(5):451–460. doi: 10.1038/ncb2725 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    de Visser KE, Ciampricotti M, Michalak EM, Tan DW, Speksnijder EN, Hau CS, Clevers H, Barker N, Jonkers J (2012) Developmental stage-specific contribution of LGR5(+) cells to basal and luminal epithelial lineages in the postnatal mammary gland. J Pathol 228(3):300–309. doi: 10.1002/path.4096 CrossRefPubMedGoogle Scholar
  15. 15.
    Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479(7372):189–193. doi: 10.1038/nature10573 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhu Y, Huang YF, Kek C, Bulavin DV (2013) Apoptosis differently affects lineage tracing of Lgr5 and Bmi1 intestinal stem cell populations. Cell Stem Cell 12(3):298–303. doi: 10.1016/j.stem.2013.01.003 CrossRefPubMedGoogle Scholar
  17. 17.
    Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ, Visvader JE (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465(7299):798–802. doi: 10.1038/nature09027 CrossRefPubMedGoogle Scholar
  18. 18.
    Nakada D, Oguro H, Levi BP, Ryan N, Kitano A, Saitoh Y, Takeichi M, Wendt GR, Morrison SJ (2014) Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 505(7484):555–558. doi: 10.1038/nature12932 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shehata M, van Amerongen R, Zeeman AL, Giraddi RR, Stingl J (2014) The influence of tamoxifen on normal mouse mammary gland homeostasis. Breast Cancer Res 16(4):411. doi: 10.1186/s13058-014-0411-0 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chang TH, Kunasegaran K, Tarulli GA, De Silva D, Voorhoeve PM, Pietersen AM (2014) New insights into lineage restriction of mammary gland epithelium using parity-identified mammary epithelial cells. Breast Cancer Res 16(1):R1. doi: 10.1186/bcr3593 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L, Li M, Furth PA, Hennighausen L (1997) Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 25(21):4323–4330CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hayashi M, Sutou S, Shimada H, Sato S, Sasaki YF, Wakata A (1989) Difference between intraperitoneal and oral gavage application in the micronucleus test. The 3rd collaborative study by CSGMT/JEMS.MMS. Collaborative Study Group for the Micronucleus Test/Mammalian Mutagenesis Study Group of the Environmental Mutagen Society of Japan. Mutat Res 223(4):329–344CrossRefPubMedGoogle Scholar
  23. 23.
    Cawthorne C, Swindell R, Stratford IJ, Dive C, Welman A (2007) Comparison of doxycycline delivery methods for Tet-inducible gene expression in a subcutaneous xenograft model. J Biomol Tech 18(2):120–123PubMedPubMedCentralGoogle Scholar
  24. 24.
    Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A (1991) Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19(15):4293CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nakamura E, Nguyen MT, Mackem S (2006) Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev Dyn 235(9):2603–2612. doi: 10.1002/dvdy.20892 CrossRefPubMedGoogle Scholar
  26. 26.
    Reinert RB, Kantz J, Misfeldt AA, Poffenberger G, Gannon M, Brissova M, Powers AC (2012) Tamoxifen-induced Cre-loxP recombination is prolonged in pancreatic islets of adult mice. PLoS One 7(3), e33529. doi: 10.1371/journal.pone.0033529 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Reid JM, Goetz MP, Buhrow SA, Walden C, Safgren SL, Kuffel MJ, Reinicke KE, Suman V, Haluska P, Hou X, Ames MM (2014) Pharmacokinetics of endoxifen and tamoxifen in female mice: implications for comparative in vivo activity studies. Cancer Chemother Pharmacol. doi: 10.1007/s00280-014-2605-7 Google Scholar
  28. 28.
    Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62. doi: 10.1038/nature06293 CrossRefPubMedGoogle Scholar
  29. 29.
    Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144. doi: 10.1016/j.cell.2010.09.016
  30. 30.
    van Amerongen R (2015) Lineage Tracing in the Mammary Gland Using Cre/lox Technology and Fluorescent Reporter Alleles. Methods Mol Biol. 1293:187–211. doi: 10.1007/978-1-4939-2519-3_11

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Anoeska A. A. van de Moosdijk
    • 1
  • Nai Yang Fu
    • 2
    • 3
  • Anne C. Rios
    • 2
    • 3
  • Jane E. Visvader
    • 2
    • 3
  • Renée van Amerongen
    • 1
  1. 1.Section of Molecular Cytology and Van Leeuwenhoek Centre for Advanced MicroscopySwammerdam Institute for Life Sciences, Universityof AmsterdamAmsterdamThe Netherlands
  2. 2.The Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
  3. 3.Department of Medical BiologyUniversity of MelbourneParkvilleAustralia

Personalised recommendations