Highlighting Gibberellins Accumulation Sites in Arabidopsis thaliana Root Using Fluorescently Labeled Gibberellins

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1497)

Abstract

The physical location of plant hormones is an important factor in maintaining their proper metabolism, perception, and mediated developmental responses. Thus, unveiling plant hormones dynamics at the molecule’s level is essential for a comprehensive, detailed understanding of both their functions and the regulative mechanisms they are subjected to. Here, we describe the use of fluorescently labeled, bioactive gibberellins (GAs) to highlight the dynamic distribution and accumulation sites of bioactive GAs in Arabidopsis thaliana roots by confocal microscopy.

Key words

Plant hormones Gibberellins Fluorescent labeling Fluorescence microscopy Chemical biology 

References

  1. 1.
    Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092CrossRefPubMedGoogle Scholar
  2. 2.
    Daviere JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151CrossRefPubMedGoogle Scholar
  3. 3.
    Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251CrossRefPubMedGoogle Scholar
  4. 4.
    Sun TP (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154:567–570CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Coling D, Kachar B (2001) Theory and application of fluorescence microscopy. Curr Protoc Neurosci Chapter 2, Unit 2 1Google Scholar
  6. 6.
    Combs CA (2010) Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci Chapter 2, Unit2 1Google Scholar
  7. 7.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909CrossRefPubMedGoogle Scholar
  8. 8.
    Sahoo H (2012) Fluorescent labeling techniques in biomolecules: a flashback. RSC Adv 2:7017–7029CrossRefGoogle Scholar
  9. 9.
    Jung D, Min K, Jung J, Jang W, Kwon Y (2013) Chemical biology-based approaches on fluorescent labeling of proteins in live cells. Mol Biosyst 9:862–872CrossRefPubMedGoogle Scholar
  10. 10.
    Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lavis LD, Raines RT (2014) Bright building blocks for chemical biology. ACS Chem Biol 9:855–866CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shani E, Weinstain R, Zhang Y, Castillejo C, Kaiserli E, Chory J, Tsien RY, Estelle M (2013) Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proc Natl Acad Sci U S A 110:4834–4839CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hayashi K, Nakamura S, Fukunaga S, Nishimura T, Jenness MK, Murphy AS, Motose H, Nozaki H, Furutani M, Aoyama T (2014) Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc Natl Acad Sci U S A 111:11557–11562CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Irani NG, Di Rubbo S, Mylle E, Van den Begin J, Schneider-Pizon J, Hnilikova J, Sisa M, Buyst D, Vilarrasa-Blasi J, Szatmari AM, Van Damme D, Mishev K, Codreanu MC, Kohout L, Strnad M, Cano-Delgado AI, Friml J, Madder A, Russinova E (2012) Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nat Chem Biol 8:583–589CrossRefPubMedGoogle Scholar
  15. 15.
    Tsuchiya Y, Yoshimura M, Sato Y, Kuwata K, Toh S, Holbrook-Smith D, Zhang H, McCourt P, Itami K, Kinoshita T, Hagihara S (2015) Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349:864–868CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Molecular Biology and Ecology of Plants, Life Sciences FacultyTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations