Advertisement

Eliciting Epitope-Specific CD8+ T Cell Response by Immunization with Microbial Protein Antigens Formulated with α-Galactosylceramide: Theory, Practice, and Protocols

  • Pavlo Gilchuk
  • Frances C. Knight
  • John T. Wilson
  • Sebastian JoyceEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1494)

Abstract

CD8+ cytotoxic T lymphocytes confer protection against infectious diseases caused by viruses, bacteria, and parasites. Hence, significant efforts have been invested into devising ways to generate CD8+ T cell-targeted vaccines. Generation of microbe-free protein subunit vaccines requires a thorough knowledge of protective target antigens. Such antigens are proteolytically processed peptides presented by MHC class I molecules. To induce a robust antigen-specific CD8+ T cell response through vaccination, it is essential to formulate the antigen with an effective adjuvant. Here, we describe a versatile method for generating high-frequency antigen-specific CD8+ T cells through immunization of mice using the invariant natural killer T cell agonist α-galactosylceramide as the adjuvant.

Key words

Adjuvant α-Galactosylceramide Antigen-specific CD8+ T cells Microbial protein antigens Mouse immunization 

Notes

Acknowledgements

Supported by Vanderbilt University Discovery Grant as well as VA Merit Award (BX001444) and NIH Contracts (AI040079), Research (AI042284, HL121139), Core (CA068485, DK058404), and Center (CA068485) grants.

References

  1. 1.
    Plotkin SA, Plotkin SL (2011) The development of vaccines: how the past led to the future. Nat Rev Microbiol 9:889–893CrossRefPubMedGoogle Scholar
  2. 2.
    Zepp F (2010) Principles of vaccine design-lessons from nature. Vaccine 28(Suppl 3):C14–C24CrossRefPubMedGoogle Scholar
  3. 3.
    Amanna IJ, Slifka MK (2009) Wanted, dead or alive: new viral vaccines. Antiviral Res 84:119–130CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bevan MJ (2011) Understand memory, design better vaccines. Nat Immunol 12:463–465CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pulendran B, Ahmed R (2011) Immunological mechanisms of vaccination. Nat Immunol 131:509–517CrossRefGoogle Scholar
  6. 6.
    Koff WC, Gust ID, Plotkin SA (2014) Toward a human vaccines project. Nat Immunol 15:589–592CrossRefPubMedGoogle Scholar
  7. 7.
    Amanna IJ, Slifka MK (2011) Contributions of humoral and cellular immunity to vaccine-induced protection in humans. Virology 411:206–215CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Moss B (2011) Smallpox vaccines: targets of protective immunity. Immunol Rev 239:8–26CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rees AR (2015) The antibody molecule: from antitoxins to therapeutic antibodies, 1st edn. Oxford Medical Histories/Oxford University Press, Oxford, p 384Google Scholar
  10. 10.
    Jenner E (1809) Two cases of Small-Pox Infection communicated to the Foetus in Utero under peculiar circumstances, with additional remarks. Med Chir Trans 1:271–277CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Adkins B, Leclerc C, Marshall-Clarke S (2004) Neonatal adaptive immunity comes of age. Nat Rev Immunol 4:553–564CrossRefPubMedGoogle Scholar
  12. 12.
    Swamy GK, Wheeler SM (2014) Neonatal pertussis, cocooning and maternal immunization. Expert Rev Vaccines 13:1107–1114CrossRefPubMedGoogle Scholar
  13. 13.
    Verhasselt V (2015) Is infant immunization by breastfeeding possible? Philos Trans R Soc Lond B Biol Sci. doi: 10.1098/rstb.2014.0139 PubMedPubMedCentralGoogle Scholar
  14. 14.
    O’Connell CJ, Karzon DT, Barron AL, Plaut ME, Ali VM (1964) Progressive vaccinia with normal antibodies. A case possibly due to deficient cellular immunity. Ann Intern Med 60:282–289CrossRefPubMedGoogle Scholar
  15. 15.
    Blum JS, Wearsch PA, Cresswell P (2013) Pathways of antigen processing. Annu Rev Immunol 31:443–473CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Segura E, Amigorena S (2015) Cross-presentation in mouse and human dendritic cells. Adv Immunol 127:1–31CrossRefPubMedGoogle Scholar
  17. 17.
    Thomas PG, Keating R, Hulse-Post DJ, Doherty PC (2006) Cell-mediated protection in influenza infection. Emerg Infect Dis 12:48–54CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Brown LE, Kelso A (2009) Prospects for an influenza vaccine that induces cross-protective cytotoxic T lymphocytes. Immunol Cell Biol 87:300–308CrossRefPubMedGoogle Scholar
  19. 19.
    Kohlmeier JE, Woodland DL (2009) Immunity to respiratory viruses. Annu Rev Immunol 27:61–82CrossRefPubMedGoogle Scholar
  20. 20.
    Kremer M, Suezer Y, Volz A, Frenz T, Majzoub M, Hanschmann KM, Lehmann MH, Kalinke U, Sutter G (2012) Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox. PLoS Pathog 8:e1002557Google Scholar
  21. 21.
    Goulding J, Bogue R, Tahiliani V, Croft M, Salek-Ardakani S (2012) CD8+ T cells are essential for recovery from a respiratory vaccinia virus infection. J Immunol 189:2432–2440Google Scholar
  22. 22.
    Gordon SN, Cecchinato V, Andresen V, Heraud JM, Hryniewicz A, Parks RW, Venzon D, Chung HK, Karpova T, McNally J, Silvera P, Reimann KA, Matsui H, Kanehara T, Shinmura Y, Yokote H, Franchini G (2011) Smallpox vaccine safety is dependent on T cells and not B cells. J Infect Dis 203:1043–1053CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li CR, Greenberg PD, Gilbert MJ, Goodrich JM, Riddell SR (1994) Recovery of Hla-restricted cytomegalovirus (Cmv)-specific T-cell responses after allogeneic bone-marrow transplant - correlation with Cmv disease and effect of ganciclovir prophylaxis. Blood 83:1971–1979PubMedGoogle Scholar
  24. 24.
    Goulder PJR, Watkins DI (2008) Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat Rev Immunol 8:619–630CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schmidt NW, Butler NS, Badovinac VP, Harty JT (2010) Extreme CD8+ T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites. PLoS Pathog 6:e1000998Google Scholar
  26. 26.
    Epstein JE, Tewari K, Lyke KE, Sim BKL, Billingsley PF, Laurens MB, Gunasekera A, Chakravarty S, James ER, Sedegah M, Richman A, Velmurugan S, Reyes S, Li M, Tucker K, Ahumada A, Ruben AJ, Li T, Stafford R, Eappen AG, Tamminga C, Bennett JW, Ockenhouse CF, Murphy JR, Komisar J, Thomas N, Loyevsky M, Birkett A, Plowe CV, Loucq C et al (2011) Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science 334:475–480CrossRefPubMedGoogle Scholar
  27. 27.
    Woodworth JSM, Behar SM (2006) Mycobacterium tuberculosis-specific CD8(+) T cells and their role in immunity. Crit Rev Immunol 26:317–352CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gilchuk P, Spencer CT, Conant SB, Hill T, Gray JJ, Niu X, Zheng M, Erickson JJ, Boyd KL, McAfee KJ, Oseroff C, Hadrup SR, Bennink JR, Hildebrand W, Edwards KM, Crowe JE Jr, Williams JV, Buus S, Sette A, Schumacher TN, Link AJ, Joyce S (2013) Discovering naturally processed antigenic determinants that confer protective T cell immunity. J Clin Invest 123:1976–1987CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gerdts V, Littel-van den Hurk SV, Griebel PJ, Babiuk LA (2007) Use of animal models in the development of human vaccines. Future Microbiol 2:667–675CrossRefPubMedGoogle Scholar
  30. 30.
    Gerdts V, Wilson HL, Meurens F, van Drunen Littel-van den Hurk S, Wilson D, Walker S, Wheler C, Townsend H, Potter AA (2015) Large animal models for vaccine development and testing. ILAR J 56:53–62CrossRefPubMedGoogle Scholar
  31. 31.
    van Hall T, van der Burg SH (2012) Mechanisms of peptide vaccination in mouse models: tolerance, immunity, and hyperreactivity. Adv Immunol 114:51–76CrossRefPubMedGoogle Scholar
  32. 32.
    Koup RA, Douek DC (2011) Vaccine design for CD8+ T lymphocyte responses. Cold Spring Harb Perspect Med 1:a007252Google Scholar
  33. 33.
    Remakus S, Rubio D, Ma X, Sette A, Sigal LJ (2012) Memory CD8+ T cells specific for a single immunodominant or subdominant determinant induced by peptide-dendritic cell immunization protect from an acute lethal viral disease. J Virol 86:9748–9759Google Scholar
  34. 34.
    Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33:492–503CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239:178–196CrossRefPubMedGoogle Scholar
  36. 36.
    Cho HI, Celis E (2009) Optimized peptide vaccines eliciting extensive CD8+ T-cell responses with therapeutic antitumor effects. Cancer Res 69:9012–9019Google Scholar
  37. 37.
    Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, Van Egeren DS, Park C, Irvine DJ (2014) Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507:519–522CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Saroja C, Lakshmi P, Bhaskaran S (2011) Recent trends in vaccine delivery systems: a review. Int J Pharm Invest 1:64–74CrossRefGoogle Scholar
  39. 39.
    Moon JJ, Huang B, Irvine DJ (2012) Engineering nano- and microparticles to tune immunity. Adv Mater 24:3724–3746CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V (2003) NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171:5140–5147Google Scholar
  41. 41.
    Singh N, Hong S, Scherer DC, Serizawa I, Burdin N, Kronenberg M, Koezuka Y, Van Kaer L (1999) Activation of NK T cells by CD1d and alpha-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol (Cutting Edge) 163:2373–2377Google Scholar
  42. 42.
    Semmling V, Lukacs-Kornek V, Thaiss CA, Quast T, Hochheiser K, Panzer U, Rossjohn J, Perlmutter P, Cao J, Godfrey DI, Savage PB, Knolle PA, Kolanus W, Forster I, Kurts C (2010) Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol 11:313–320CrossRefPubMedGoogle Scholar
  43. 43.
    Oseroff C, Peters B, Pasquetto V, Moutaftsi M, Sidney J, Panchanathan V, Tscharke DC, Maillere B, Grey H, Sette A (2008) Dissociation between epitope hierarchy and immunoprevalence in CD8+ responses to vaccinia virus western reserve. J Immunol 180:7193–7202Google Scholar
  44. 44.
    Gottschalk C, Mettke E, Kurts C (2015) The role of invariant natural killer T cells in dendritic cell licensing, cross-priming, and memory CD8(+) T cell generation. Front Immunol 6:379PubMedPubMedCentralGoogle Scholar
  45. 45.
    Hill TM, Bezbradica JS, Van Kaer L, Joyce S (2016) CD1d-restricted natural killer T cells. Encyclopaedia Live Sci. doi: 10.1002/9780470015902.a0020180.pub2 Google Scholar
  46. 46.
    Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM (2003) Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198:267–279CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Galli G, Pittoni P, Tonti E, Malzone C, Uematsu Y, Tortoli M, Maione D, Volpini G, Finco O, Nuti S, Tavarini S, Dellabona P, Rappuoli R, Casorati G, Abrignani S (2007) Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci U S A 104:3984–3989CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kamijuku H, Nagata Y, Jiang X, Ichinohe T, Tashiro T, Mori K, Taniguchi M, Hase K, Ohno H, Shimaoka T, Yonehara S, Odagiri T, Tashiro M, Sata T, Hasegawa H, Seino KI (2008) Mechanism of NKT cell activation by intranasal coadministration of alpha-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol 1:208–218CrossRefPubMedGoogle Scholar
  49. 49.
    Reilly EC, Thompson EA, Aspeslagh S, Wands JR, Elewaut D, Brossay L (2012) Activated iNKT cells promote memory CD8+ T cell differentiation during viral infection. PLoS One 7, e37991Google Scholar
  50. 50.
    Carreno LJ, Kharkwal SS, Porcelli SA (2014) Optimizing NKT cell ligands as vaccine adjuvants. Immunotherapy 6:309–320CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ko SY, Ko HJ, Chang WS, Park SH, Kweon MN, Kang CY (2005) alpha-galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. J Immunol 175:3309–3317CrossRefPubMedGoogle Scholar
  52. 52.
    Courtney AN, Thapa P, Singh S, Wishahy AM, Zhou D, Sastry J (2011) Intranasal but not intravenous delivery of the adjuvant alpha-galactosylceramide permits repeated stimulation of natural killer T cells in the lung. Eur J Immunol 41:3312–3322CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Nishimura T, Kitamura H, Iwakabe K, Yahata T, Ohta A, Sato M, Takeda K, Okumura K, Van Kaer L, Kawano T, Taniguchi M, Nakui M, Sekimoto M, Koda T (2000) The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int Immunol 12:987–994CrossRefPubMedGoogle Scholar
  54. 54.
    Guillonneau C, Mintern JD, Hubert FX, Hurt AC, Besra GS, Porcelli S, Barr IG, Doherty PC, Godfrey DI, Turner SJ (2009) Combined NKT cell activation and influenza virus vaccination boosts memory CTL generation and protective immunity. Proc Natl Acad Sci U S A 106:3330–3335CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Duwaerts CC, Gregory SH (2011) Targeting the diverse immunological functions expressed by hepatic NKT cells. Expert Opin Ther Targets 15:973–988CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Alexander J, Oseroff C, Sidney J, Sette A (2003) Derivation of HLA-B*0702 transgenic mice: functional CTL repertoire and recognition of human B*0702-restricted CTL epitopes. Hum Immunol 64:211–223CrossRefPubMedGoogle Scholar
  57. 57.
    Green M, Sambrook J. (2012) Molecular cloning. A laboratory manual (Fourth Edition) (Cold Spring Harbor Laboratory Press), Vol 3, p Protocol 8Google Scholar
  58. 58.
    Belyakov IM, Ahlers JD (2009) What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J Immunol 183:6883–6892CrossRefPubMedGoogle Scholar
  59. 59.
    Li AV, Moon JJ, Abraham W, Suh H, Elkhader J, Seidman MA, Yen M, Im EJ, Foley MH, Barouch DH, & Irvine DJ (2013) Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci Transl Med 5: 204ra130Google Scholar
  60. 60.
    Sharrow SO (2002) Overview of flow cytometry. Curr Protoc Immunol Chapter 5: Unit 5 1Google Scholar
  61. 61.
    Roederer M (2002) Multiparameter FACS analysis. Curr Protoc Immunol Chapter 5: Unit 5 8Google Scholar
  62. 62.
    Lissina A, Ladell K, Skowera A, Clement M, Edwards E, Seggewiss R, van den Berg HA, Gostick E, Gallagher K, Jones E, Melenhorst JJ, Godkin AJ, Peakman M, Price DA, Sewell AK, Wooldridge L (2009) Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers. J Immunol Methods 340:11–24CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Montero JC, Seoane S, Ocana A, Pandiella A (2011) Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clin Cancer Res 17:5546–5552CrossRefPubMedGoogle Scholar
  64. 64.
    Zimmerman T, Petit Frere C, Satzger M, Raba M, Weisbach M, Dohn K, Popp A, Donzeau M (2006) Simultaneous metal chelate affinity purification and endotoxin clearance of recombinant antibody fragments. J Immunol Methods 314:67–73CrossRefPubMedGoogle Scholar
  65. 65.
    Wagner CS, Grotzke JE, Cresswell P (2012) Intracellular events regulating cross-presentation. Front Immunol 3:138CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J, Hombrink P, Castermans E, Thor Straten P, Blank C, Haanen JB, Heemskerk MH, Schumacher TN (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6:520–526CrossRefPubMedGoogle Scholar
  67. 67.
    Kain L, Webb B, Anderson BL, Deng S, Holt M, Costanzo A, Zhao M, Self K, Teyton A, Everett C, Kronenberg M, Zajonc DM, Bendelac A, Savage PB, Teyton L (2014) The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian alpha-linked glycosylceramides. Immunity 41:543–554CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Morita M, Motoki K, Akimoto K, Natori T, Sakai T, Sawa E, Yamaji K, Koezuka Y, Kobayashi E, Fukushima H (1995) Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J Med Chem 38:2176–2187CrossRefPubMedGoogle Scholar
  69. 69.
    Natori T, Koezuka Y, Higa T (1993) Agelasphins, Novel a-galactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett 34:5591–5592CrossRefGoogle Scholar
  70. 70.
    Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626–1629CrossRefPubMedGoogle Scholar
  71. 71.
    Birkholz AM, Girardi E, Wingender G, Khurana A, Wang J, Zhao M, Zahner S, Illarionov PA, Wen X, Li M, Yuan W, Porcelli SA, Besra GS, Zajonc DM, Kronenberg M (2015) A novel glycolipid antigen for NKT cells that preferentially induces IFN-gamma production. J Immunol 195:924–933CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Schmieg J, Yang G, Franck RW, Tsuji M (2003) Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med 198:1631–1641CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Li X, Fujio M, Imamura M, Wu D, Vasan S, Wong CH, Ho DD, Tsuji M (2010) Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci U S A 107:13010–13015CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Aspeslagh S, Li Y, Yu ED, Pauwels N, Trappeniers M, Girardi E, Decruy T, Van Beneden K, Venken K, Drennan M, Leybaert L, Wang J, Franck RW, Van Calenbergh S, Zajonc DM, Elewaut D (2011) Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis. EMBO J 30:2294–2305CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Aspeslagh S, Nemcovic M, Pauwels N, Venken K, Wang J, Van Calenbergh S, Zajonc DM, Elewaut D (2013) Enhanced TCR footprint by a novel glycolipid increases NKT-dependent tumor protection. J Immunol 191:2916–2925CrossRefPubMedGoogle Scholar
  76. 76.
    Tyznik AJ, Farber E, Girardi E, Birkholz A, Li Y, Chitale S, So R, Arora P, Khurana A, Wang J, Porcelli SA, Zajonc DM, Kronenberg M, Howell AR (2011) Glycolipids that elicit IFN-gamma-biased responses from natural killer T cells. Chem Biol 18:1620–1630CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Miyamoto K, Miyake S, Yamamura T (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413:531–534CrossRefPubMedGoogle Scholar
  78. 78.
    Yu KO, Im JS, Molano A, Dutronc Y, Illarionov PA, Forestier C, Fujiwara N, Arias I, Miyake S, Yamamura T, Chang YT, Besra GS, Porcelli SA (2005) Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of alpha-galactosylceramides. Proc Natl Acad Sci U S A 102:3383–3388CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kinjo Y, Wu D, Kim G, Xing GW, Poles MA, Ho DD, Tsuji M, Kawahara K, Wong CH, Kronenberg M (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525CrossRefPubMedGoogle Scholar
  80. 80.
    Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage PB, Bendelac A (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529CrossRefPubMedGoogle Scholar
  81. 81.
    Albacker LA, Chaudhary V, Chang YJ, Kim HY, Chuang YT, Pichavant M, DeKruyff RH, Savage PB, Umetsu DT (2013) Invariant natural killer T cells recognize a fungal glycosphingolipid that can induce airway hyperreactivity. Nat Med 19:1297–1304CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Joyce S, Girardi E, Zajonc DM (2011) NKT cell ligand recognition logic: molecular basis for a synaptic duet and transmission of inflammatory effectors. J Immunol 187:1081–1089CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Rodenko B, Toebes M, Hadrup SR, van Esch WJ, Molenaar AM, Schumacher TN, Ovaa H (2006) Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat Protoc 1:1120–1132CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pavlo Gilchuk
    • 1
    • 2
  • Frances C. Knight
    • 3
  • John T. Wilson
    • 3
    • 4
  • Sebastian Joyce
    • 1
    • 2
    Email author
  1. 1.Veterans Administration Tennessee Valley Healthcare SystemUS Department of Veterans AffairsNashvilleUSA
  2. 2.Department of Pathology, Microbiology and Immunology, School of MedicineVanderbilt UniversityNashvilleUSA
  3. 3.Department of Biomedical Engineering, School of EngineeringVanderbilt UniversityNashvilleUSA
  4. 4.Department of Chemical & Biomolecular Engineering, School of EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations