Advertisement

Overview of Vaccine Adjuvants: Introduction, History, and Current Status

  • Ruchi R. Shah
  • Kimberly J. Hassett
  • Luis A. Brito
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1494)

Abstract

Adjuvants are included in sub-unit or recombinant vaccines to enhance the potency of poorly immunogenic antigens. Adjuvant discovery is as complex as it is a multidiscplinary intersection of formulation science, immunology, toxicology, and biology. Adjuvants such as alum, which have been in use for the past 90 years, have illustrated that adjuvant research is a methodical process. As science advances, new analytical tools are developed which allows us to delve deeper into the various mechanisms that generates a potent immune response. Additionally, these new techniques help the field learn about our existing vaccines and what makes them safe, and effective, allowing us to leverage that in the next generation of vaccines. Our goal in this chapter is to define the concept, need, and mechanism of adjuvants in the vaccine field while describing its history, present use, and future prospects. More details on individual adjuvants and their formulation, development, mechanism, and use will be covered in depth in the next chapters.

Key words

Adjuvant Alum Nanoemulsion Vaccine Immunopotentiator 

References

  1. 1.
    The decade of vaccines—a plan to extend vaccine benefits to the whole world. December 18, 2012 November 5, 2015]. http://www.niaid.nih.gov/topics/vaccines/Pages/decadeVaccines.aspx
  2. 2.
    Riedel S (2005) Edward Jenner and the history of smallpox and vaccination. Proc (Baylor Univ Med Cent) 18(1):21–25Google Scholar
  3. 3.
    Gross CP, Sepkowitz KA (1998) The myth of the medical breakthrough: smallpox, vaccination, and Jenner reconsidered. Int J Infect Dis 3(1):54–60CrossRefPubMedGoogle Scholar
  4. 4.
    Hilleman MR (2000) Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. Vaccine 18(15):1436–1447CrossRefPubMedGoogle Scholar
  5. 5.
    Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9(1):4–9CrossRefPubMedGoogle Scholar
  6. 6.
    Pashine A, Valiante NM, Ulmer JB (2005) Targeting the innate immune response with improved vaccine adjuvants. Nat Med 11(4 Suppl):S63–S68CrossRefPubMedGoogle Scholar
  7. 7.
    Kinney RM et al (1993) Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5'-noncoding region and the E2 envelope glycoprotein. J Virol 67(3):1269–1277PubMedPubMedCentralGoogle Scholar
  8. 8.
    Haynes LM (2013) Progress and challenges in RSV prophylaxis and vaccine development. J Infect Dis 208(Suppl 3):S177–S183CrossRefPubMedGoogle Scholar
  9. 9.
    Kallerup R, Foged C (2015) Classification of vaccines. In: Foged C et al (eds) Subunit vaccine delivery. Springer, New York, pp 15–29Google Scholar
  10. 10.
    Shah R, Brito L, O’Hagan D, Amiji M (2014) Emulsions as vaccine adjuvants. In: Foged C, Rades T, Perrie Y, Hook S (eds) Subunit vaccine delivery. Springer, New YorkGoogle Scholar
  11. 11.
    Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33(4):492–503CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schijns VE, Lavelle EC (2011) Trends in vaccine adjuvants. Expert Rev Vaccines 10(4):539–550CrossRefPubMedGoogle Scholar
  13. 13.
    Vesikari T et al (2011) Oil-in-water emulsion adjuvant with influenza vaccine in young children. N Engl J Med 365(15):1406–1416CrossRefPubMedGoogle Scholar
  14. 14.
    Roteli-Martins CM et al (2012) Sustained immunogenicity and efficacy of the HPV-16/18 AS04-adjuvanted vaccine. Hum Vaccin Immunother 8(3):390–397CrossRefPubMedGoogle Scholar
  15. 15.
    Brito LA, O’Hagan DT (2014) Designing and building the next generation of improved vaccine adjuvants. J Control Release 190: 563–579CrossRefPubMedGoogle Scholar
  16. 16.
    Brito LA, Malyala P, O'Hagan DT (2013) Vaccine adjuvant formulations: a pharmaceutical perspective. Semin Immunol 25(2):130–145CrossRefPubMedGoogle Scholar
  17. 17.
    Rambe DS et al (2015) Safety and mechanism of action of licensed vaccine adjuvants. Int Curr Pharma J 4(8):420–431CrossRefGoogle Scholar
  18. 18.
    FDA approves first seasonal influenza vaccine containing an adjuvant. 2015 [cited 2016 3/18/2016]. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm474295.htm
  19. 19.
    Glenny A, Pope CG, Waddington H, Wallace U (1926) Immunological notes XVII to XXIV. J Pathol 29:31–40CrossRefGoogle Scholar
  20. 20.
    Hassett KJ et al (2013) Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization. Eur J Pharm Biopharm 85(2):279–286CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Romero Méndez IZ et al (2007) Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants. Vaccine 25(5):825–833CrossRefPubMedGoogle Scholar
  22. 22.
    al-Shakhshir R et al (1994) Effect of protein adsorption on the surface charge characteristics of aluminium-containing adjuvants. Vaccine 12(5):472–474CrossRefPubMedGoogle Scholar
  23. 23.
    Seeber SJ, White JL, Hem SL (1991) Predicting the adsorption of proteins by aluminium-containing adjuvants. Vaccine 9(3):201–203CrossRefPubMedGoogle Scholar
  24. 24.
    Noe SM et al (2010) Mechanism of immunopotentiation by aluminum-containing adjuvants elucidated by the relationship between antigen retention at the inoculation site and the immune response. Vaccine 28(20):3588–3594CrossRefPubMedGoogle Scholar
  25. 25.
    Marichal T et al (2011) DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 17(8):996–1002CrossRefPubMedGoogle Scholar
  26. 26.
    Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9(4):287–293CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Oleszycka E, Lavelle EC (2014) Immunomodulatory properties of the vaccine adjuvant alum. Curr Opin Immunol 28:1–5CrossRefPubMedGoogle Scholar
  28. 28.
    Traquina P et al (1996) MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. J Infect Dis 174(6):1168–1175CrossRefPubMedGoogle Scholar
  29. 29.
    Granoff DM et al (1997) MF59 adjuvant enhances antibody responses of infant baboons immunized with Haemophilus influenzae type b and Neisseria meningitidis group C oligosaccharide-CRM197 conjugate vaccine. Infect Immun 65(5):1710–1715PubMedPubMedCentralGoogle Scholar
  30. 30.
    Garcon N, Chomez P, Van Mechelen M (2007) GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines 6(5):723–739CrossRefPubMedGoogle Scholar
  31. 31.
    Didierlaurent AM et al (2009) AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol 183(10):6186–6197CrossRefPubMedGoogle Scholar
  32. 32.
    Casella CR, Mitchell TC (2008) Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci 65(20):3231–3240CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen D et al (2009) Characterization of the freeze sensitivity of a hepatitis B vaccine. Hum Vaccin 5(1):26–32CrossRefPubMedGoogle Scholar
  34. 34.
    Salnikova MS et al (2012) Influence of formulation pH and suspension state on freezing-induced agglomeration of aluminum adjuvants. J Pharm Sci 101(3):1050–1062CrossRefPubMedGoogle Scholar
  35. 35.
    Braun LJ et al (2009) Development of a freeze-stable formulation for vaccines containing aluminum salt adjuvants. Vaccine 27(1): 72–79CrossRefPubMedGoogle Scholar
  36. 36.
    Hassett KJ et al (2015) Glassy-state stabilization of a dominant negative inhibitor anthrax vaccine containing aluminum hydroxide and glycopyranoside lipid A adjuvants. J Pharm Sci 104(2):627–639CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Clausi AL et al (2009) Influence of protein conformation and adjuvant aggregation on the effectiveness of aluminum hydroxide adjuvant in a model alkaline phosphatase vaccine. J Pharm Sci 98(1):114–121CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Clausi A et al (2008) Influence of particle size and antigen binding on effectiveness of aluminum salt adjuvants in a model lysozyme vaccine. J Pharm Sci 97(12):5252–5262CrossRefPubMedGoogle Scholar
  39. 39.
    Lindblad EB (2000) Freund’s adjuvant. In: O’Hagan D (ed) Vaccine adjuvants. Humana Press, Totowa, NJ, pp 49–64CrossRefGoogle Scholar
  40. 40.
    Aucouturier J, Dupuis L, Ganne V (2001) Adjuvants designed for veterinary and human vaccines. Vaccine 19(17-19):2666–2672CrossRefPubMedGoogle Scholar
  41. 41.
    Hilleman MR (1966) Critical appraisal of emulsified oil adjuvants applied to viral vaccines. Prog Med Virol 8:131–182PubMedGoogle Scholar
  42. 42.
    Murray R, Cohen P, Hardegree MC (1972) Mineral oil adjuvants: biological and chemical studies. Ann Allergy 30(3):146–151PubMedGoogle Scholar
  43. 43.
    Stills HF Jr (2005) Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J 46(3):280–293CrossRefPubMedGoogle Scholar
  44. 44.
    Stuewart-Tull DE et al (1976) Immunosuppressive effect in mycobacterial adjuvant emulsions of mineral oils containing low molecular weight hydrocarbons. Int Arch Allergy Appl Immunol 52(1–4):118–128CrossRefPubMedGoogle Scholar
  45. 45.
    Whitehouse MW et al (1974) Freund’s adjuvants: relationship of arthritogenicity and adjuvanticity in rats to vehicle composition. Immunology 27(2):311–330PubMedPubMedCentralGoogle Scholar
  46. 46.
    Rodríguez PC, Rodríguez G, González G, Lage A (2010) Clinical development and perspectives of CIMAvax EGF, Cuban vaccine for non-small-cell lung cancer therapy. MEDICC Rev 12(1):17–23PubMedGoogle Scholar
  47. 47.
    O’Hagan DT et al (2013) The history of MF59((R)) adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines 12(1): 13–30CrossRefPubMedGoogle Scholar
  48. 48.
    O’Hagan DT et al (2011) MF59 adjuvant: the best insurance against influenza strain diversity. Expert Rev Vaccines 10(4):447–462CrossRefPubMedGoogle Scholar
  49. 49.
    Schultze V et al (2008) Safety of MF59 adjuvant. Vaccine 26(26):3209–3222CrossRefPubMedGoogle Scholar
  50. 50.
    Manmohan S (2007) Vaccine adjuvants and delivery systems. Wiley, Hoboken, NJ, pp 115–129Google Scholar
  51. 51.
    O’Hagan DT et al (2012) The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine 30(29):4341–4348CrossRefPubMedGoogle Scholar
  52. 52.
    Seubert A et al (2008) The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J Immunol 180(8):5402–5412CrossRefPubMedGoogle Scholar
  53. 53.
    Moris P et al (2011) H5N1 influenza vaccine formulated with AS03A induces strong cross-reactive and polyfunctional CD4 T-cell responses. J Clin Immunol 31(3):443–454CrossRefPubMedGoogle Scholar
  54. 54.
    Garcon N, Vaughn DW, Didierlaurent AM (2012) Development and evaluation of AS03, an adjuvant system containing alpha-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines 11(3):349–366CrossRefPubMedGoogle Scholar
  55. 55.
    Morel S et al (2011) Adjuvant system AS03 containing alpha-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29(13):2461–2473CrossRefPubMedGoogle Scholar
  56. 56.
    Garcon N, Van Mechelen M (2011) Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines 10(4):471–486CrossRefPubMedGoogle Scholar
  57. 57.
    Kensil CR, Kammer R (1998) QS-21: a water-soluble triterpene glycoside adjuvant. Expert Opin Investig Drugs 7(9):1475–1482CrossRefPubMedGoogle Scholar
  58. 58.
    Fox CB et al (2013) TLR4 ligand formulation causes distinct effects on antigen-specific cell-mediated and humoral immune responses. Vaccine 31(49):5848–5855CrossRefPubMedGoogle Scholar
  59. 59.
    Coler RN et al (2011) Development and characterization of synthetic glucopyranosyl lipid adjuvant system as a vaccine adjuvant. PLoS One 6(1):e16333CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Fox CB (2009) Squalene emulsions for parenteral vaccine and drug delivery. Molecules 14(9):3286–3312CrossRefPubMedGoogle Scholar
  61. 61.
    Copland MJ et al (2005) Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 83(2):97–105CrossRefPubMedGoogle Scholar
  62. 62.
    Felnerova D et al (2004) Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 15(6):518–529CrossRefPubMedGoogle Scholar
  63. 63.
    Pichyangkul S et al (2004) Pre-clinical evaluation of the malaria vaccine candidate P. falciparum MSP1(42) formulated with novel adjuvants or with alum. Vaccine 22(29–30): 3831–3840CrossRefPubMedGoogle Scholar
  64. 64.
    Davidsen J et al (2005) Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6’-dibehenate)-a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 1718(1-2):22–31CrossRefPubMedGoogle Scholar
  65. 65.
    Banerji B, Alving CR (1979) Lipid A from endotoxin: antigenic activities of purified fractions in liposomes. J Immunol 123(6): 2558–2562PubMedGoogle Scholar
  66. 66.
    Christensen D et al (2007) Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 6(5):785–796CrossRefPubMedGoogle Scholar
  67. 67.
    van Dissel JT et al (2014) A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine 32(52): 7098–7107CrossRefPubMedGoogle Scholar
  68. 68.
    Morein B et al (1984) Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308(5958):457–460CrossRefPubMedGoogle Scholar
  69. 69.
    Drane D et al (2007) ISCOMATRIX adjuvant for prophylactic and therapeutic vaccines. Expert Rev Vaccines 6(5):761–772CrossRefPubMedGoogle Scholar
  70. 70.
    Pearse MJ, Drane D (2005) ISCOMATRIX® adjuvant for antigen delivery. Adv Drug Deliv Rev 57(3):465–474CrossRefPubMedGoogle Scholar
  71. 71.
    Schnurr M et al (2009) ISCOMATRIX adjuvant induces efficient cross-presentation of tumor antigen by dendritic cells via rapid cytosolic antigen delivery and processing via tripeptidyl peptidase II. J Immunol 182(3): 1253–1259CrossRefPubMedGoogle Scholar
  72. 72.
    Didierlaurent AM et al (2014) Enhancement of adaptive immunity by the human vaccine adjuvant AS01 depends on activated dendritic cells. J Immunol 193(4):1920–1930CrossRefPubMedGoogle Scholar
  73. 73.
    Preis I, Langer RS (1979) A single-step immunization by sustained antigen release. J Immunol Methods 28(1–2):193–197CrossRefPubMedGoogle Scholar
  74. 74.
    O’Hagan DT et al (1991) Biodegradable microparticles as controlled release antigen delivery systems. Immunology 73(2):239–242PubMedPubMedCentralGoogle Scholar
  75. 75.
    Eldridge JH et al (1991) Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun 59(9):2978–2986PubMedPubMedCentralGoogle Scholar
  76. 76.
    Jain S, O’Hagan DT, Singh M (2011) The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines 10(12):1731–1742CrossRefPubMedGoogle Scholar
  77. 77.
    Wendorf J et al (2008) A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum Vaccin 4(1):44–49CrossRefPubMedGoogle Scholar
  78. 78.
    Kazzaz J et al (2006) Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J Control Release 110(3):566–573CrossRefPubMedGoogle Scholar
  79. 79.
    Shah RR et al (2014) The impact of size on particulate vaccine adjuvants. Nanomedicine (Lond) 9(17):2671–2681CrossRefGoogle Scholar
  80. 80.
    Fox CB et al (2011) Immunomodulatory and physical effects of oil composition in vaccine adjuvant emulsions. Vaccine 29(51):9563–9572CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Shah RR et al (2015) The development of self-emulsifying oil-in-water emulsion adjuvant and an evaluation of the impact of droplet size on performance. J Pharm Sci 104(4):1352–1361CrossRefPubMedGoogle Scholar
  82. 82.
    Calabro S et al (2011) Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine 29(9):1812–1823CrossRefPubMedGoogle Scholar
  83. 83.
    Lal H et al (2015) Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med 372(22):2087–2096CrossRefPubMedGoogle Scholar
  84. 84.
    Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386(9988):31–45Google Scholar
  85. 85.
    Garcon N et al (2011) Development of an AS04-adjuvanted HPV vaccine with the adjuvant system approach. BioDrugs 25(4):217–226CrossRefPubMedGoogle Scholar
  86. 86.
    Eng NF et al (2013) The potential of 1018 ISS adjuvant in hepatitis B vaccines. Hum Vaccin Immunother 9(8):1661–1672CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Dynavax announces FDA acceptance for review of biologics license application and PDUFA action date for HEPLISAV-B(TM). 2016. http://investors.dynavax.com/releasedetail.cfm?ReleaseID=962813
  88. 88.
    Melero I et al (2014) Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 11(9):509–524CrossRefPubMedGoogle Scholar
  89. 89.
    Update on phase III clinical trial of investigational MAGE-A3 antigen-specific cancer immunotherapeutic in non-small cell lung cancer. 2014 [cited 2016 3/18/2016]. https://us.gsk.com/en-us/media/press-releases/2014/update-on-phase-iii-clinical-trial-of-investigational-mage-a3-antigen-specific-cancer-immunotherapeutic-in-non-small-cell-lung-cancer/
  90. 90.
    Wu TY, Singh M et al (2014) Rational design of small molecules as vaccine adjuvants. Sci Transl Med 6(263):263ra160CrossRefPubMedGoogle Scholar
  91. 91.
    Knipe DM et al (2014) Summary and recommendations from a National Institute of Allergy and Infectious Diseases (NIAID) workshop on “Next Generation Herpes Simplex Virus Vaccines”. Vaccine 32(14):1561–1562CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Skoberne M et al (2013) An adjuvanted herpes simplex virus 2 subunit vaccine elicits a T cell response in mice and is an effective therapeutic vaccine in Guinea pigs. J Virol 87(7): 3930–3942CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Nohynek H et al (2012) AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the Incidence of Childhood Narcolepsy in Finland. PLoS One 7(3):e33536CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Winstone AM et al (2014) Clinical features of narcolepsy in children vaccinated with AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine in England. Dev Med Child Neurol 56(11):1117–1123CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ahmed SS et al (2015) Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci Transl Med 7(294):294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ruchi R. Shah
    • 1
  • Kimberly J. Hassett
    • 2
  • Luis A. Brito
    • 3
  1. 1.Northeastern UniversityBostonUSA
  2. 2.ValeraCambridgeUSA
  3. 3.Moderna TherapeuticsCambridgeUSA

Personalised recommendations