ERK Signaling pp 337-351

Part of the Methods in Molecular Biology book series (MIMB, volume 1487) | Cite as

Reconstructing ERK Signaling in the Drosophila Embryo from Fixed Images

  • Bomyi Lim
  • Carmeline J. Dsilva
  • Ioannis G. Kevrekidis
  • Stanislav Y. Shvartsman
Protocol

Abstract

The early Drosophila embryo provides unique opportunities for quantitative studies of ERK signaling. This system is characterized by simple anatomy, the ease of obtaining large numbers of staged embryos, and the availability of powerful tools for genetic manipulation of the ERK pathway. Here, we describe how these experimental advantages can be combined with recently developed microfluidic devices for high throughput imaging of ERK activation dynamics. We focus on the stage during the third hour of development, when ERK activation is essential for patterning of the future nerve cord. Our approach starts with an ensemble of fixed embryos stained with an antibody that recognizes the active, dually phosphorylated form of ERK. Each embryo in this ensemble provides a snapshot of the spatial and temporal pattern of ERK activation during development. We then quantitatively estimate the ages of fixed embryos using a model that links their morphology and developmental time. This model is learned based on live imaging of cellularization and gastrulation, two highly stereotyped morphogenetic processes at this stage of embryogenesis. Applying this approach, we can characterize ERK signaling at high spatial and temporal resolution. Our methodology can be readily extended to studies of ERK regulation and function in multiple mutant backgrounds, providing a versatile assay for quantitative studies of developmental ERK signaling.

Key words

ERK dynamics Quantitative imaging Drosophila embryo 

References

  1. 1.
    Futran AS, Link AJ, Seger R et al (2013) ERK as a model for systems biology of enzyme kinetics in cells. Curr Biol 23:R972–R979CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Newbern J, Zhong J, Wickramasinghe RS et al (2008) Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development. Proc Natl Acad Sci U S A 105:17115–17120CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dsilva CJ, Lim B, Lu H et al (2015) Temporal ordering and registration of images in studies of developmental dynamics. Development 142:1717–1724CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lim B, Dsilva CJ, Levario TJ et al (2015) Dynamics of inductive ERK signaling in the Drosophila embryo. Curr Biol 25:1784–1790CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gabay L, Seger R, Shilo BZ (1997) In situ activation pattern of Drosophila EGF receptor pathway during development. Science 277:1103–1106CrossRefPubMedGoogle Scholar
  7. 7.
    Bronner G, Jackle H (1991) Control and function of terminal gap gene activity in the posterior pole region of the Drosophila embryo. Mech Dev 35:205–211CrossRefPubMedGoogle Scholar
  8. 8.
    von Ohlen T, Doe CQ (2000) Convergence of dorsal, dpp, and egfr signaling pathways subdivides the Drosophila neuroectoderm into three dorsal-ventral columns. Dev Biol 224:362–372CrossRefGoogle Scholar
  9. 9.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  10. 10.
    Kosman D, Mizutani CM, Lemons D et al (2004) Multiplex detection of RNA expression in Drosophila embryos. Science 305:846CrossRefPubMedGoogle Scholar
  11. 11.
    Coppey M, Boettiger AN, Berezhkovskii AM et al (2008) Nuclear trapping shapes the terminal gradient in the Drosophila embryo. Curr Biol 18:915–919CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Levario TJ, Zhan M, Lim B et al (2013) Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nat Protoc 8:721–736CrossRefPubMedGoogle Scholar
  13. 13.
    Lecuit T, Samanta R, Wieschaus E (2002) slam encodes a developmental regulator of polarized membrane growth during cleavage of the Drosophila embryo. Dev Cell 2:425–436CrossRefPubMedGoogle Scholar
  14. 14.
    Figard L, Xu H, Garcia HG et al (2013) The plasma membrane flattens out to fuel cell-surface growth during Drosophila cellularization. Dev Cell 27:648–655CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shlens J (2005) A tutorial on principal component analysis. Systems Neurobiology Laboratory, University of California at San Diego, San Diego, CAGoogle Scholar
  16. 16.
    Jolliffe IT (2002) Principal component analysis. Springer series in statistics, 2nd edn. Springer, New York, NYGoogle Scholar
  17. 17.
    Turk MA, Pentland AP (1991) Face recognition using eigenfaces. IEEE Comput Soc Conf Comput Vision Pattern Recogn 1991:586–591Google Scholar
  18. 18.
    Wasserman L (2004) All of statistics : a concise course in statistical inference. Springer texts in statistics. Springer, New York, NYCrossRefGoogle Scholar
  19. 19.
    Heiberger RM, Holland B (2004) Statistical analysis and data display: an intermediate course with examples in S-plus, R, and SAS. Springer texts in statistics. Springer, New York, NYCrossRefGoogle Scholar
  20. 20.
    Chung K, Kim Y, Kanodia JS et al (2011) A microfluidic array for large-scale ordering and orientation of embryos. Nat Methods 8:171–176CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Bomyi Lim
    • 1
    • 3
  • Carmeline J. Dsilva
    • 1
  • Ioannis G. Kevrekidis
    • 1
    • 2
  • Stanislav Y. Shvartsman
    • 1
    • 3
  1. 1.Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA
  3. 3.Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUSA

Personalised recommendations