Custom-Made Microspheres for Optical Tweezers

  • Anita Jannasch
  • Mohammad K. Abdosamadi
  • Avin Ramaiya
  • Suman De
  • Valentina Ferro
  • Aaron Sonnberger
  • Erik Schäffer
Part of the Methods in Molecular Biology book series (MIMB, volume 1486)


Due to their high position and force sensitivity and the ability to remotely apply forces and torques, optical tweezers are widely used in diverse fields, such as biology, material science, and physics. Often, small dielectric particles are trapped and used as probes, which for experimental convenience are mostly spherical and composed of silica or polystyrene. The optical properties of these materials together with the microsphere size determine the trapping efficiency, and the position and force resolution. However, using only a single, homogeneous, isotropic, and unstructured material limits the range of trapping properties and thereby the applications of optical tweezers. Here, we show how custom-made microspheres composed of coated high-refractive-index materials—titania and nanodiamonds—and birefringent, liquid crystals extend the range and combination of desired trapping properties. These custom-made microspheres either enable the generation of high forces, a high force or time resolution, or the applications of torques. Custom-made probes expand the range of possible experiments and approaches broadening the scope and applicability of optical tweezers.

Key words

Optical tweezers Core–shell particles Anti-reflection coating Nanonewton Microspheres Titania Nanodiamonds TEOS MCM-41 Liquid crystalline birefringent particles Angular trapping Rotation Optical torque 



We thank K. Sandomirski and T. Gisler for a detailed protocol how to make birefringent microspheres, Basudev Roy for help with the rotational power spectrum, and Sven A. Szilagyi, Melanie Eckert, Michael Bugiel, and Mayank Chugh for comments on the manuscript. This work was supported by the European Research Council (ERC Starting Grant 2010, Nanomech 260875), the Rosa Luxemburg Foundation, the Technische Universität Dresden and the Universität Tübingen.


  1. 1.
    Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809CrossRefGoogle Scholar
  2. 2.
    Perkins T (2009) Optical traps for single molecule biophysics: a primer. Laser Photon Rev 3:203–220CrossRefGoogle Scholar
  3. 3.
    Zhang H, Liu Kk (2008) Optical tweezers for single cells. J R Soc Interface 5:671–690CrossRefGoogle Scholar
  4. 4.
    Fazal F, Block S (2011) Optical tweezers study life under tension. Nat Photon 5:318–321CrossRefGoogle Scholar
  5. 5.
    Bormuth V, Jannasch A, Ander M et al (2008) Optical trapping of coated microspheres. Opt Express 16:423–427CrossRefGoogle Scholar
  6. 6.
    Jannasch A, Bormuth V, van Kats CM et al (2008) Coated microspheres as enhanced probes for optical trapping. Proc SPIE 7038:70382BCrossRefGoogle Scholar
  7. 7.
    Demirörs AF, Jannasch A, van Oostrum PDJ et al (2011) Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence. Langmuir 27:1626–1634CrossRefGoogle Scholar
  8. 8.
    Jannasch A, Mahamdeh M, Schäffer E (2011) Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise. Phys Rev Lett 107:228301CrossRefGoogle Scholar
  9. 9.
    Jannasch A, Demirörs AF, van Oostrum PDJ et al (2012) Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nat Photon 6:469–473CrossRefGoogle Scholar
  10. 10.
    Mahamdeh M, Schäffer E (2009) Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution. Opt Express 17:17190–17199CrossRefGoogle Scholar
  11. 11.
    Mahamdeh M, Campos CP, Schäffer E (2011) Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers. Opt Express 19:11759–11768CrossRefGoogle Scholar
  12. 12.
    Craig D, McDonald A, Mazilu M et al (2015) Enhanced optical manipulation of cells using antireflection coated microparticles. ACS Photon 2:1403–1409CrossRefGoogle Scholar
  13. 13.
    Tolić-Nørrelykke SF, Schäffer E, Howard J et al (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77:103101CrossRefGoogle Scholar
  14. 14.
    Yu SJ, Kang MW, Chang HC et al (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127:17604–17605CrossRefGoogle Scholar
  15. 15.
    Fu CC, Lee HY, Chen K et al (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 104:727–732CrossRefGoogle Scholar
  16. 16.
    Bumb A, Sarkar SK, Billington N et al (2013) Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. J Am Chem Soc 135:7815–7818CrossRefGoogle Scholar
  17. 17.
    von Haartman E, Jiang H, Khomich AA et al (2013) Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: fabrication. J Mater Chem B 1:2358CrossRefGoogle Scholar
  18. 18.
    Gittes F, Schmidt CF (1998) Signals and noise in micromechanical measurements. In: Methods in cell biology, vol 55. Academic Press, New York, pp 129–156Google Scholar
  19. 19.
    Bishop A, Nieminen T, Heckenberg N et al (2003) Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Phys Rev A 68:033802CrossRefGoogle Scholar
  20. 20.
    Bishop AI, Nieminen TA, Heckenberg NR et al (2004) Optical microrheology using rotating laser-trapped particles. Phys Rev Lett 92:198104CrossRefGoogle Scholar
  21. 21.
    La Porta A, Wang MD (2004) Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys Rev Lett 92:190801CrossRefGoogle Scholar
  22. 22.
    Deufel C, Forth S, Simmons CR et al (2007) Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat Methods 4:223–225CrossRefGoogle Scholar
  23. 23.
    Gutiérrez-Medina B, Andreasson JOL, Greenleaf WJ et al (2010) An optical apparatus for rotation and trapping. Methods Enzymol 475:377–404CrossRefGoogle Scholar
  24. 24.
    Pedaci F, Huang Z, van Oene M et al (2012) Calibration of the optical torque wrench. Opt Express 20:3787–3802CrossRefGoogle Scholar
  25. 25.
    Vogel R, Persson M, Feng C et al (2009) Synthesis and surface modification of birefringent vaterite microspheres. Langmuir 25:11672–11679CrossRefGoogle Scholar
  26. 26.
    Chen X, Berg HC (2000) Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys J 78:1036–1041CrossRefGoogle Scholar
  27. 27.
    Xing J, Bai F, Berry R et al (2006) Torque-speed relationship of the bacterial flagellar motor. Proc Natl Acad Sci USA 103:1260–1265CrossRefGoogle Scholar
  28. 28.
    Ma J, Bai L, Wang MD (2013) Transcription under torsion. Science 340:1580–1583CrossRefGoogle Scholar
  29. 29.
    Toyabe S, Watanabe-Nakayama T, Okamoto T et al (2011) Thermodynamic efficiency and mechanochemical coupling of F1-ATPase. Proc Natl Acad Sci USA 108:17951–17956CrossRefGoogle Scholar
  30. 30.
    Hua W, Chung J, Gelles J (2002) Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements. Science 295:844–848CrossRefGoogle Scholar
  31. 31.
    Andrecka J, Ortega Arroyo J, Takagi Y et al (2015) Structural dynamics of myosin 5 during processive motion revealed by interferometric scattering microscopy. eLife 4:e05413CrossRefGoogle Scholar
  32. 32.
    Sandomirski K, Martin S, Maret G et al (2004) Highly birefringent colloidal particles for tracer studies. J Phys Condens Matter 16:S4137CrossRefGoogle Scholar
  33. 33.
    Nieminen TA, Loke VLY, Stilgoe AB et al (2007) Optical tweezers computational toolbox. J Opt A: Pure Appl Opt 9:S196–S203CrossRefGoogle Scholar
  34. 34.
    Hu Y, Nieminen TA, Heckenberg NR et al (2008) Antireflection coating for improved optical trapping. J Appl Phys 103:093119CrossRefGoogle Scholar
  35. 35.
    Yu HK, Yi GR, Kang JH et al (2008) Surfactant-assisted synthesis of uniform titania microspheres and their clusters. Chem Mater 20:2704–2710CrossRefGoogle Scholar
  36. 36.
    Pal M, Serrano JG, Santiago P et al (2007) Size-controlled synthesis of spherical TiO2 nanoparticles: morphology, crystallization, and phase transition. J Phys Chem C 111:96–102CrossRefGoogle Scholar
  37. 37.
    Eiden-Assmann S, Widoniak J, Maret G (2005) Synthesis and characterization of hollow and non-hollow monodisperse colloidal tio2 particles. J Disper Sci Technol 25:535–545CrossRefGoogle Scholar
  38. 38.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  39. 39.
    Grün M, Unger KK, Matsumoto A et al (1999) Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor Mesopor Mater 27:207–216CrossRefGoogle Scholar
  40. 40.
    Kresge CT, Leonowicz ME, Roth WJ et al (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  41. 41.
    Shikata T, Hirata H, Kotaka T (1988) Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 4:354–359CrossRefGoogle Scholar
  42. 42.
    Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Phys: Condens Matter 2:6869–6892Google Scholar
  43. 43.
    Liu S, Cool P, Collart O et al (2003) The influence of the alcohol concentration on the structural ordering of mesoporous silica: cosurfactant versus cosolvent. J Phys Chem B 107:10405–10411CrossRefGoogle Scholar
  44. 44.
    Yoon SB, Kim JY, Kim JH et al (2007) Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface. J Mater Chem 17:1758–1761CrossRefGoogle Scholar
  45. 45.
    Kim JH, Yoon SB, Kim JY et al (2008) Synthesis of monodisperse silica spheres with solid core and mesoporous shell: morphological control of mesopores. Colloids Surf A 313–314:77–81CrossRefGoogle Scholar
  46. 46.
    Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, San DiegoGoogle Scholar
  47. 47.
    Bugiel M, Fantana H, Bormuth V et al (2015) Versatile microsphere attachment of GFP-labeled motors and other tagged proteins with preserved functionality. J Biol Methods 2:e30CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Anita Jannasch
    • 1
  • Mohammad K. Abdosamadi
    • 1
  • Avin Ramaiya
    • 1
  • Suman De
    • 1
  • Valentina Ferro
    • 1
  • Aaron Sonnberger
    • 1
  • Erik Schäffer
    • 1
  1. 1.Center for Plant Molecular BiologyUniversität TübingenTübingenGermany

Personalised recommendations