A Surface-Coupled Optical Trap with 1-bp Precision via Active Stabilization

  • Stephen R. Okoniewski
  • Ashley R. Carter
  • Thomas T. Perkins
Part of the Methods in Molecular Biology book series (MIMB, volume 1486)


Optical traps can measure bead motions with Å-scale precision. However, using this level of precision to infer 1-bp motion of molecular motors along DNA is difficult, since a variety of noise sources degrade instrumental stability. In this chapter, we detail how to improve instrumental stability by (1) minimizing laser pointing, mode, polarization, and intensity noise using an acousto-optical-modulator mediated feedback loop and (2) minimizing sample motion relative to the optical trap using a three-axis piezo-electric-stage mediated feedback loop. These active techniques play a critical role in achieving a surface stability of 1 Å in 3D over tens of seconds and a 1-bp stability and precision in a surface-coupled optical trap over a broad bandwidth (Δf = 0.03–2 Hz) at low force (6 pN). These active stabilization techniques can also aid other biophysical assays that would benefit from improved laser stability and/or Å-scale sample stability, such as atomic force microscopy and super-resolution imaging.

Key words

Optical trap Optical tweezers Single molecule Active stabilization Force spectroscopy 



We thank Carl Sauer for providing detailed electronic diagrams and associated files for the circuit boards. This work is supported by a National Science Foundation Graduate Research Fellowship (Grant No. DGE 1144083 to S.R.O.), a National Institute of Health Molecular Biophysics Training Grant awarded to S.R.O. (T32 GM-065103), the NSF (Phys-1125844), and NIST. Mention of commercial products is for information only; it does not imply NIST recommendation or endorsement, nor does it imply that the products mentioned are necessarily the best available for the purpose. T.T.P. is a staff member of NIST’s quantum physics division.


  1. 1.
    Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727CrossRefGoogle Scholar
  2. 2.
    Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119CrossRefGoogle Scholar
  3. 3.
    Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465CrossRefGoogle Scholar
  4. 4.
    Wen JD, Lancaster L, Hodges C, Zeri AC, Yoshimura SH, Noller HF, Bustamante C, Tinoco I (2008) Following translation by single ribosomes one codon at a time. Nature 452:598–603CrossRefGoogle Scholar
  5. 5.
    Visscher K, Gross SP, Block SM (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J Sel Top Quant Electron 2:1066–1076CrossRefGoogle Scholar
  6. 6.
    Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809CrossRefGoogle Scholar
  7. 7.
    Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228CrossRefGoogle Scholar
  8. 8.
    Lee W, Strumpfer J, Bennett V, Schulten K, Marszalek PE (2012) Mutation of conserved histidines alters tertiary structure and nanomechanics of consensus ankyrin repeats. J Biol Chem 287:19115–19121CrossRefGoogle Scholar
  9. 9.
    Perkins TT (2014) Angstrom-precision optical traps and applications. Annu Rev Biophys 43:279–302CrossRefGoogle Scholar
  10. 10.
    Pralle A, Prummer M, Florin E-L, Stelzer EHK, Horber JKH (1999) Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc Res Tech 44:378–386CrossRefGoogle Scholar
  11. 11.
    Denk W, Webb WW (1990) Optical measurement of picometer displacements of transparent microscopic objects. Appl Opt 29:2382–2391CrossRefGoogle Scholar
  12. 12.
    Carter AR, King GM, Ulrich TA, Halsey W, Alchenberger D, Perkins TT (2007) Stabilization of an optical microscope to 0.1 nm in three dimensions. Appl Opt 46:421–427CrossRefGoogle Scholar
  13. 13.
    Carter AR, Seol Y, Perkins TT (2009) Precision surface-coupled optical-trapping assays with 1 base-pair resolution. Biophys J 96:2926–2934CrossRefGoogle Scholar
  14. 14.
    Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72:1335–1346CrossRefGoogle Scholar
  15. 15.
    Shaevitz JW, Abbondanzieri EA, Landick R, Block SM (2003) Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426:684–687CrossRefGoogle Scholar
  16. 16.
    Peterman EJG, van Dijk MA, Kapitein LC, Schmidt CF (2003) Extending the bandwidth of optical-tweezers interferometry. Rev Sci Instrum 74:3246–3249CrossRefGoogle Scholar
  17. 17.
    Paik DH, Perkins TT (2012) Single-molecule optical-trapping measurements with DNA anchored to an array of gold nanoposts. Methods Mol Biol 875:335–356CrossRefGoogle Scholar
  18. 18.
    Candelli A, Wuite GJL, Peterman EJG (2011) Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions. Phys Chem Chem Phys 13:7263–7272CrossRefGoogle Scholar
  19. 19.
    Bustamante C, Chemla YR, Moffitt JR (2008) High-resolution dual-trap optical tweezers with differential detection. In: Selvin PR, Ha T (eds) Single-molecule techniques. Cold Spring Harbor, New YorkGoogle Scholar
  20. 20.
    Moffitt JR, Chemla YR, Izhaky D, Bustamante C (2006) Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad Sci U S A 103:9006–9011CrossRefGoogle Scholar
  21. 21.
    Neuman KC, Abbondanzieri EA, Block SM (2005) Measurement of the effective focal shift in an optical trap. Opt Lett 30:1318–1320CrossRefGoogle Scholar
  22. 22.
    Walder R, Paik DH, Bull MS, Sauer C, Perkins TT (2015) Ultrastable measurement platform: sub-nm drift over hours in 3D at room temperature. Opt Express 23:16554–16564CrossRefGoogle Scholar
  23. 23.
    Capitanio M, Cicchi R, Pavone FS (2005) Position control and optical manipulation for nanotechnology applications. Eur Phys J B 46:1–8CrossRefGoogle Scholar
  24. 24.
    Janshoff A, Neitzert M, Oberdorfer Y, Fuchs H (2000) Force spectroscopy of molecular systems - single molecule spectroscopy of polymers and biomolecules. Angew Chem Int Ed Engl 39:3213–3237Google Scholar
  25. 25.
    Churnside AB, King GM, Carter AR, Perkins TT (2008) Improved performance of an ultrastable measurement platform using a field-programmable gate array for real-time deterministic control. Proc SPIE 7042:704205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Stephen R. Okoniewski
    • 1
    • 2
  • Ashley R. Carter
    • 3
  • Thomas T. Perkins
    • 1
    • 4
  1. 1.JILANational Institute of Standards and Technology, and University of ColoradoBoulderUSA
  2. 2.Department of PhysicsUniversity of ColoradoBoulderUSA
  3. 3.Department of Physics and AstronomyAmherst CollegeAmherstUSA
  4. 4.Department of Molecular, Cellular, and Developmental BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations