Advertisement

Beyond the Hookean Spring Model: Direct Measurement of Optical Forces Through Light Momentum Changes

  • Arnau Farré
  • Ferran Marsà
  • Mario Montes-UsateguiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1486)

Abstract

The ability to measure forces in the range of 0.1–100 pN is a key feature of optical tweezers used for biophysical and cell biological studies. Analysis of the interactions between biomolecules and the forces that biomolecular motors generate at the single-molecule level has provided valuable insights in the molecular mechanisms that govern key cellular functions such as gene expression and the long-distance transport of organelles. Methods for determining the minute forces that biomolecular motors generate exhibit notable constraints that limit their application for studies other than the well-controlled in vitro experiments (although recent advances have been made that permit more quantitative optical tweezers studies insight living cells). One constraint comes from the linear approximation of the distance vs. force relationship used to extract the force from the position of the bead in the trap. This commonly employed “indirect” approach, although usually sufficiently precise, restricts the use of optical tweezers to a limited range of displacements (typically up to ±150 nm for small beads). Measurements based on the detection of the light-momentum changes, on the other hand, offer a “direct” and precise way to determine forces even when the generated displacements reach the escape point, thus covering the complete force range developed by the trap. In this chapter, we detail the requirements for the design of a force-sensor instrument based on light-momentum changes using a high-numerical-aperture objective lens and provide insights into its construction. We further discuss the calibration of the system and the main steps for its routine operation.

Key words

Optical trap Optical tweezers Force measurements Back-focal plane interferometry Light momentum method 

Notes

Acknowledgements

We would like to thank Frederic Català and Estela Martín-Badosa for fruitful discussions. This work was funded by the Spanish Ministry of Education and Science, under grants FIS2007-65880 and FIS2010-16104. A. Farré and F. Marsà are the recipients of research grants from the INNCORPORA program from the Ministerio de Economía y Competitividad (Spain).

References

  1. 1.
    Verdeny I, Farré A, Mas J et al (2011) Optical trapping: a review of essential concepts. Opt Pura Apl 44:527–551Google Scholar
  2. 2.
    Block SM, Blair DF, Berg HC (1989) Compliance of bacterial flagella measured with optical tweezers. Nature 338:514–518CrossRefGoogle Scholar
  3. 3.
    Ashkin A, Schuetze K, Dziedzic JM et al (1990) Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348:346–348CrossRefGoogle Scholar
  4. 4.
    Visscher K, Gross SP, Block SM (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J Sel Top Quantum Electron 2:1066–1076CrossRefGoogle Scholar
  5. 5.
    Gittes F, Schmidt CF (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23:7–9CrossRefGoogle Scholar
  6. 6.
    Farré A, Mas J, Marsà F et al (2015) Force measurements in complex samples with optical tweezers, in optics in the life sciences, OSA Technical Digest, paper OtT1D.1Google Scholar
  7. 7.
    Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61:569–582CrossRefGoogle Scholar
  8. 8.
    Harada Y, Asakura T (1996) Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Commun 124:529–541CrossRefGoogle Scholar
  9. 9.
    Bui AAM, Stilgoe AB, Khatibzadeh N et al (2015) Escape forces and trajectories in optical tweezers and their effect on calibration. Opt Express 23:24317–24330CrossRefGoogle Scholar
  10. 10.
    Liang H, Vu KT, Krishnan P et al (1996) Wavelength dependence of cell cloning efficiency after optical trapping. Biophys J 70:1529–1533CrossRefGoogle Scholar
  11. 11.
    Neuman KC, Chadd EH, Liou GF, Bergman K et al (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863CrossRefGoogle Scholar
  12. 12.
    Kuo SC, Sheetz MP (1993) Force of single kinesin molecules measured with optical tweezers. Science 260:232–234CrossRefGoogle Scholar
  13. 13.
    Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119CrossRefGoogle Scholar
  14. 14.
    Svoboda K, Block SM (1994) Force and velocity measured for single kinesin molecules. Cell 77:773–784CrossRefGoogle Scholar
  15. 15.
    Richardson AC, Reihani SNS, Oddershede LB (2008) Non-harmonic potential of a single beam optical trap. Opt Express 16:15709–15717CrossRefGoogle Scholar
  16. 16.
    Greenleaf WJ, Woodside MT, Abbondanzieri EA et al (2005) Passive all-optical force clamp for high-resolution laser trapping. Phys Rev Lett 95:208102CrossRefGoogle Scholar
  17. 17.
    Jahnel M, Behrndt M, Jannasch A et al (2011) Measuring the complete force field of an optical trap. Opt Lett 36:1260–1262CrossRefGoogle Scholar
  18. 18.
    Nieminen TA, Loke VLY, Stilgoe AB et al (2007) Optical tweezers computational toolbox. J Opt A-Pure Appl Op 9:S196–S203CrossRefGoogle Scholar
  19. 19.
    Stilgoe AB, Nieminen TA, Knöner G et al (2008) The effect of Mie resonances on trapping in optical tweezers. Opt Express 19:15039–15051CrossRefGoogle Scholar
  20. 20.
    Smith SB, Cui Y, Bustamante C (2003) Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol 361:134–162CrossRefGoogle Scholar
  21. 21.
    Farré A, Montes-Usategui M (2010) A force detection technique for single-beam optical traps based on direct measurement of light momentum changes. Opt Express 18:11955–11968CrossRefGoogle Scholar
  22. 22.
    Farré A, Marsà F, Montes-Usategui M (2012) Optimized back-focal-plane interferometry directly measures forces of optically trapped particles. Opt Express 20:12270–12291CrossRefGoogle Scholar
  23. 23.
    Mas J, Farré A, López-Quesada C et al (2011) Measuring stall forces in vivo with optical tweezers through light momentum changes. Proc SPIE 8097:809726CrossRefGoogle Scholar
  24. 24.
    Jun Y, Tripathy SK, Narayanareddy BRJ et al (2014) Calibration of optical tweezers for in vivo force measurements: how do different approaches compare? Biophys J 107:1474–1484CrossRefGoogle Scholar
  25. 25.
    Taylor MA, Waleed M, Stilgoe AB et al (2015) Enhanced optical trapping via structured scattering. Nat Photon 9:669–673CrossRefGoogle Scholar
  26. 26.
    Ma X, Jannasch A, Albrecht U et al (2015) Enzyme-powered hollow mesoporous janus nanomotors. Nano Lett 15:7043–7050CrossRefGoogle Scholar
  27. 27.
    Callegari A, Mijalkov M, Gököz AB et al (2015) Computational tollbox for optical tweezers in geometrical optics. J Opt Soc Am B, B11–B19Google Scholar
  28. 28.
    Català F, Marsà F, Farré A et al (2014) Momentum measurements with holographic optical tweezers for exploring force detection capabilities on irregular samples. Proc SPIE 9164:91640ACrossRefGoogle Scholar
  29. 29.
    Lee WM, Reece PJ, Marchington RF et al (2007) Construction and calibration of an optical trap on a fluorescence optical microscope. Nat Protocols 2:3226–3238CrossRefGoogle Scholar
  30. 30.
    Nicholas MP, Rao L, Gennerich A (2014) An improved optical tweezers assay for measuring the force generation of single kinesin molecules. Methods Mol Biol 1136:171–246CrossRefGoogle Scholar
  31. 31.
    Viana NB, Rocha MS, Mesquita ON et al (2006) Characterization of objective transmittance for optical tweezers. Appl Opt 45:4263–4269CrossRefGoogle Scholar
  32. 32.
    Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594–612CrossRefGoogle Scholar
  33. 33.
    Lang MJ, Asbury CL, Shaevitz JW et al (2002) An automated two-dimensional optical force clamp for single molecule studies. Biophys J 83:491–501CrossRefGoogle Scholar
  34. 34.
    Pralle A, Prummer M, Florin E et al (1999) Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc Res Tech 44:378–386CrossRefGoogle Scholar
  35. 35.
    Bustamante C, Smith SB (2006) Light-force sensor and method for measuring axial optical-trap forces from changes in light momentum along an optic axis US Patent 7133132 B2Google Scholar
  36. 36.
    Ke PC, Gu M (1998) Characterization of trapping force in the presence of spherical aberration. J Mod Opt 45:2159–2168CrossRefGoogle Scholar
  37. 37.
    Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809CrossRefGoogle Scholar
  38. 38.
    Huisstede JHG, Rooijen BD, van der Werf KO et al (2006) Dependence of silicon position-detector bandwidth on wavelength, power, and bias. Opt Lett 31:610–612CrossRefGoogle Scholar
  39. 39.
    Berg-Sørensen K, Oddershede L, Florin E-L et al (2003) Unintended filtering in a typical photodiode detection system for optical tweezers. J Appl Phys 93:3167–3176CrossRefGoogle Scholar
  40. 40.
    Thalhammer G, Obmascher L, Ritsch-Marte M (2015) Direct measurement of axial optical forces. Opt Express 23:6112–6129CrossRefGoogle Scholar
  41. 41.
    Tolić-Nørrelykke I-M, Berg-Sørensen K, Flyvbjerg H (2004) MatLab program for precision calibration of optical tweezers. Comput Phys Comm 159:225–240CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Arnau Farré
    • 1
    • 2
  • Ferran Marsà
    • 1
    • 2
  • Mario Montes-Usategui
    • 3
    Email author
  1. 1.Impetux Optics SLBarcelonaSpain
  2. 2.Institut de Nanociencia i Nanotecnologia (IN2UB)Universitat de BarcelonaBarcelonaSpain
  3. 3.Optical Trapping Lab—Grup de Biofotònica (BiOPT), Departamento de Física Aplicada i Òptica, Facultat de Física, and Institut de Nanociencia i Nanotecnologia (IN2UB)Universitat de BarcelonaBarcelonaSpain

Personalised recommendations