Skip to main content

Probing Single Helicase Dynamics on Long Nucleic Acids Through Fluorescence-Force Measurement

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1486))

Abstract

Helicases are nucleic acid-dependent ATPases which can bind and remodel nucleic acids, protein–nucleic acid complexes, or both. They are involved in almost every step in cells related to nucleic acid metabolisms, including DNA replication and repair, transcription, RNA maturation and splicing, and nuclear export processes. Using single-molecule fluorescence-force spectroscopy, we have previously directly observed helicase translocation on long single-stranded DNA and revealed that two monomers of UvrD helicase are required for the initiation of unwinding function. Here, we present the details of fluorescence-force spectroscopy instrumentation, calibration, and activity assays in detail for observing the biochemical activities of helicases in real time and revealing how mechanical forces are involved in protein–nucleic acid interaction. These single-molecule approaches are generally applicable to many other protein–nucleic acid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu HP, Xun L, Xie XS (1998) Single-molecule enzymatic dynamics. Science 282(5395):1877–1882. doi:10.1126/science.282.5395.1877

    Article  CAS  Google Scholar 

  2. Robison AD, Finkelstein IJ (2014) High-throughput single-molecule studies of protein–DNA interactions. FEBS Lett 588(19):3539–3546. doi:10.1016/j.febslet.2014.05.021

    Article  CAS  Google Scholar 

  3. Ilya JF, Eric CG (2013) Molecular traffic jams on DNA. Annu Rev Biophys 42(1):241–263. doi:10.1146/annurev-biophys-083012-130304

    Article  Google Scholar 

  4. Ha T, Enderle T, Ogletree DF et al (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93(13):6264–6268

    Article  CAS  Google Scholar 

  5. Roy R, Hohng S, Ha T (2008) A practical guide to single molecule FRET. Nat Methods 5(6):507–516. doi:10.1038/nmeth.1208

    Article  CAS  Google Scholar 

  6. Visscher K, Gross SP, Block SM (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J Sel Top Quantum Electron 2(4):1066–1076. doi:10.1109/2944.577338

    Article  CAS  Google Scholar 

  7. Comstock MJ, Whitley KD, Jia H et al (2015) Direct observation of structure-function relationship in a nucleic acid–processing enzyme. Science 348(6232):352–354. doi:10.1126/science.aaa0130

    Article  CAS  Google Scholar 

  8. Moffitt JR, Chemla YR, Izhaky D et al (2006) Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc Natl Acad Sci U S A 103(24):9006–9011. doi:10.1073/pnas.0603342103

    Article  CAS  Google Scholar 

  9. Woodside MT, Anthony PC, Behnke-Parks WM et al (2006) Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science 314(5801):1001–1004. doi:10.1126/science.1133601

    Article  CAS  Google Scholar 

  10. Weiss S (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat Struct Mol Biol 7(9):724–729

    Article  CAS  Google Scholar 

  11. Greenleaf WJ, Woodside MT, Block SM (2007) High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 36:171

    Article  CAS  Google Scholar 

  12. Joo C, Balci H, Ishitsuka Y et al (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51

    Article  CAS  Google Scholar 

  13. Walter NG, Huang CY, Manzo AJ et al (2008) Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat Methods 5:475

    Article  CAS  Google Scholar 

  14. Matson SW, Bean DW, George JW (1994) DNA helicases: enzymes with essential roles in all aspects of DNA metabolism. Bioessays 16(1):13–22. doi:10.1002/bies.950160103

    Article  CAS  Google Scholar 

  15. Schmid SR, Linder P (1992) D-E-A-D protein family of putative RNA helicases. Mol Microbiol 6(3):283–292. doi:10.1111/j.1365-2958.1992.tb01470.x

    Article  CAS  Google Scholar 

  16. Jankowsky E, Gross CH, Shuman S et al (2001) Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291(5501):121–125. doi:10.1126/science.291.5501.121

    Article  CAS  Google Scholar 

  17. Lohman TM, Bjornson KP (1996) Mechanisms of helicase-catalyzed DNA unwinding. Annu Rev Biochem 65(1):169–214. doi:10.1146/annurev.bi.65.070196.001125

    Article  CAS  Google Scholar 

  18. Tuteja N, Tuteja R (2004) Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 271(10):1835–1848. doi:10.1111/j.1432-1033.2004.04093.x

    Article  CAS  Google Scholar 

  19. Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50

    Article  CAS  Google Scholar 

  20. Mackintosh SG, Raney KD (2006) DNA unwinding and protein displacement by superfamily 1 and superfamily 2 helicases. Nucleic Acids Res 34(15):4154–4159. doi:10.1093/nar/gkl501

    Article  CAS  Google Scholar 

  21. Donmez I, Patel SS (2006) Mechanisms of a ring shaped helicase. Nucleic Acids Res 34(15):4216–4224. doi:10.1093/nar/gkl508

    Article  CAS  Google Scholar 

  22. Jankowsky E, Fairman ME (2007) RNA helicases—one fold for many functions. Curr Opin Struct Biol 17(3):316–324. doi:10.1016/j.sbi.2007.05.007

    Article  CAS  Google Scholar 

  23. Vindigni A (2007) Biochemical, biophysical, and proteomic approaches to study DNA helicases. Mol Biosyst 3(4):266–274. doi:10.1039/B616145F

    CAS  Google Scholar 

  24. Lee KS, Balci H, Jia H et al (2013) Direct imaging of single UvrD helicase dynamics on long single-stranded DNA. Nat Commun 4:1878. doi:10.1038/ncomms2882

    Article  Google Scholar 

  25. Lin C-T, Tritschler F, Suk Lee K et al (2014) Single-molecule imaging reveals the translocation dynamics of hepatitis C virus NS3 helicase. Biophys J 106(2):72a. doi:10.1016/j.bpj.2013.11.474

    Article  Google Scholar 

  26. Lee KS (2013) Fluorescence imaging of single molecule dynamics on long single stranded DNA. (Doctor of Philosophy Doctoral dissertation), University of Illinois at Urbana-Champaign. http://hdl.handle.net/2142/42452

    Google Scholar 

  27. Lee KS, Marciel AB, Kozlov AG et al (2014) Ultrafast redistribution of E. coli SSB along long single-stranded DNA via intersegment transfer. J Mol Biol 426(13):2413–2421. doi:10.1016/j.jmb.2014.04.023

    Article  CAS  Google Scholar 

  28. Brockman C, Kim SJ, Schroeder CM (2011) Direct observation of single flexible polymers using single stranded DNA. Soft Matter 7(18):8005–8012. doi:10.1039/C1SM05297G

    Article  CAS  Google Scholar 

  29. Zhou R, Schlierf M, Ha T (2010) Chapter Sixteen - Force–fluorescence spectroscopy at the single-molecule level. In: Nils GW (ed) Methods in enzymology, vol 475. Academic, New York, NY, pp 405–426. doi:10.1016/S0076-6879(10)75016-3

    Google Scholar 

  30. Selvin PR, Ha T (2008) Single-molecule techniques: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  31. Hua B, Han KY, Zhou R et al (2014) An improved surface passivation method for single-molecule studies. Nat Methods 11(12):1233–1236. doi:10.1038/nmeth.3143, http://www.nature.com/nmeth/journal/v11/n12/abs/nmeth.3143.html - supplementary-information

    Article  CAS  Google Scholar 

  32. Rice SE, Purcell TJ, Spudich JA (2003) [6] Building and using optical traps to study properties of molecular motors. In: Nils GW (ed) Methods in enzymology, vol 361. Academic, New York, NY, pp 112–133. doi:10.1016/S0076-6879(03)61008-6

    Google Scholar 

  33. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75(3):594–612. doi:10.1063/1.1645654

    Article  Google Scholar 

  34. Berg-Sørensen K, Peterman EJG, Weber T et al (2006) Power spectrum analysis for optical tweezers. II: laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth. Rev Sci Instrum 77(6):063106. doi:10.1063/1.2204589

    Article  Google Scholar 

  35. Kubo R, Toda M, Hashitsume N (1991) Statistical physics II: nonequilibrium statistical mechanics. Springer, Berlin

    Book  Google Scholar 

  36. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809. doi:10.1063/1.1785844

    Article  CAS  Google Scholar 

  37. Toprak E, Balci H, Blehm BH et al (2007) Three-dimensional particle tracking via bifocal imaging. Nano Lett 7(7):2043–2045. doi:10.1021/nl0709120

    Article  CAS  Google Scholar 

  38. Baumann CG, Smith SB, Bloomfield VA et al (1997) Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci U S A 94(12):6185–6190

    Article  CAS  Google Scholar 

  39. Yildiz A, Forkey JN, McKinney SA et al (2003) Myosin V Walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065. doi:10.1126/science.1084398

    Article  CAS  Google Scholar 

  40. Swoboda M, Henig J, Cheng H-M et al (2012) Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6(7):6364–6369. doi:10.1021/nn301895c

    Article  CAS  Google Scholar 

  41. van Dijk MA, Kapitein LC, van Mameren J et al (2004) Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. J Phys Chem B 108(20):6479–6484. doi:10.1021/jp049805+

    Article  Google Scholar 

  42. Lang MJ, Asbury CL, Shaevitz JW et al (2002) An automated two-dimensional optical force clamp for single molecule studies. Biophys J 83(1):491–501. doi:10.1016/S0006-3495(02)75185-0

    Article  CAS  Google Scholar 

  43. Köhler A (1984) New method of illumination for phomicrographical purposes. J R Microsc Soc 14:261–262

    Google Scholar 

Download references

Acknowledgements

T. H. is an Investigator of the Howard Hughes Medical Institute. This work is supported by NIH grant GM065367 and NSF grants PHY-1430124 to T. H. We would like to thank Olivia Yang for proofreading the manuscript and Dr. Kyung Suk Lee for constructing the original instrument and training.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekjip Ha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lin, CT., Ha, T. (2017). Probing Single Helicase Dynamics on Long Nucleic Acids Through Fluorescence-Force Measurement. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 1486. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6421-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6421-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6419-2

  • Online ISBN: 978-1-4939-6421-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics