Advertisement

Capillary Electrophoresis in Metabolomics

  • Tanja Verena Maier
  • Philippe Schmitt-KopplinEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1483)

Abstract

Metabolomics is an analytical toolbox to describe (all) low-molecular-weight compounds in a biological system, as cells, tissues, urine, and feces, as well as in serum and plasma. To analyze such complex biological samples, high requirements on the analytical technique are needed due to the high variation in compound physico-chemistry (cholesterol derivatives, amino acids, fatty acids as SCFA, MCFA, or LCFA, or pathway-related metabolites belonging to each individual organism) and concentration dynamic range. All main separation techniques (LC-MS, GC-MS) are applied in routine to metabolomics hyphenated or not to mass spectrometry, and capillary electrophoresis is a powerful high-resolving technique but still underused in this field of complex samples. Metabolomics can be performed in the non-targeted way to gain an overview on metabolite profiles in biological samples. Targeted metabolomics is applied to analyze quantitatively pre-selected metabolites. This chapter reviews the use of capillary electrophoresis in the field of metabolomics and exemplifies solutions in metabolite profiling and analysis in urine and plasma.

Key words

Capillary electrophoresis Metabolomics Mass spectrometry Fatty acids Targeted Non-targeted 

References

  1. 1.
    Ramautar R et al (2011) CE-MS for metabolomics: developments and applications in the period 2008-2010. Electrophoresis 32(1):52–65PubMedCrossRefGoogle Scholar
  2. 2.
    Ramautar R, Somsen GW, de Jong GJ (2009) CE-MS in metabolomics. Electrophoresis 30(1):276–291PubMedCrossRefGoogle Scholar
  3. 3.
    Schmitt-Kopplin P, Englmann M (2005) Capillary electrophoresis—mass spectrometry: survey on developments and applications 2003-2004. Electrophoresis 26(7–8):1209–1220PubMedCrossRefGoogle Scholar
  4. 4.
    Ramautar R, Somsen GW, de Jong GJ (2013) CE-MS for metabolomics: developments and applications in the period 2010-2012. Electrophoresis 34(1):86–98PubMedCrossRefGoogle Scholar
  5. 5.
    Ramautar R, Demirci A, Jong GJD (2006) Capillary electrophoresis in metabolomics. TrAC Trends Anal Chem 25(5):455–466CrossRefGoogle Scholar
  6. 6.
    Hirayama A, Wakayama M, Soga T (2014) Metabolome analysis based on capillary electrophoresis-mass spectrometry. TrAC Trends Anal Chem 61:215–222Google Scholar
  7. 7.
    Kok MGM, Somsen GW, de Jong GJ (2014) The role of capillary electrophoresis in metabolic profiling studies employing multiple analytical techniques. TrAC Trends Anal Chem 61:223–235Google Scholar
  8. 8.
    Ibanez C et al (2013) Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in foodomics: a review. Anal Chim Acta 802:1–13PubMedCrossRefGoogle Scholar
  9. 9.
    Zenobi R (2013) Single-cell metabolomics: analytical and biological perspectives. Science 342(6163):1243259PubMedCrossRefGoogle Scholar
  10. 10.
    Kleparnik K (2013) Recent advances in the combination of capillary electrophoresis with mass spectrometry: from element to single-cell analysis. Electrophoresis 34(1):70–85PubMedCrossRefGoogle Scholar
  11. 11.
    Amantonico A, Urban PL, Zenobi R (2010) Analytical techniques for single-cell metabolomics: state of the art and trends. Anal Bioanal Chem 398(6):2493–2504PubMedCrossRefGoogle Scholar
  12. 12.
    Williams MD et al (2013) Metabolomics of colorectal cancer: past and current analytical platforms. Anal Bioanal Chem 405(15):5013–5030PubMedCrossRefGoogle Scholar
  13. 13.
    Koslinski P et al (2011) Metabolic profiling of pteridines for determination of potential biomarkers in cancer diseases. Electrophoresis 32(15):2044–2054PubMedCrossRefGoogle Scholar
  14. 14.
    Zhao YY (2013) Metabolomics in chronic kidney disease. Clin Chim Acta 422:59–69PubMedCrossRefGoogle Scholar
  15. 15.
    Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85(2):809–822PubMedCrossRefGoogle Scholar
  16. 16.
    Trifonova OP, Lokhov PG, Archakov AI (2013) Metabolic profiling of human blood. Biochem (Moscow) Suppl Series B Biomed Chem 7(3):179–186CrossRefGoogle Scholar
  17. 17.
    Nicholson JK et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267PubMedCrossRefGoogle Scholar
  18. 18.
    Barbas C, Moraes EP, Villasenor A (2011) Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J Pharm Biomed Anal 55(4):823–831PubMedCrossRefGoogle Scholar
  19. 19.
    Garcia-Perez I et al (2008) Metabolic fingerprinting with capillary electrophoresis. J Chromatogr A 1204(2):130–139PubMedCrossRefGoogle Scholar
  20. 20.
    Mischak H et al (2009) Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom Rev 28(5):703–724PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Huck CW, Bakry R, Bonn GK (2006) Progress in capillary electrophoresis of biomarkers and metabolites between 2002 and 2005. Electrophoresis 27(1):111–125PubMedCrossRefGoogle Scholar
  22. 22.
    Xu XH et al (2012) Metabolomics: a novel approach to identify potential diagnostic biomarkers and pathogenesis in Alzheimer’s disease. Neurosci Bull 28(5):641–648PubMedCrossRefGoogle Scholar
  23. 23.
    Bonne NJ, Wong DTW (2012) Salivary biomarker development using genomic, proteomic and metabolomic approaches. Genome Med 4(10):82PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Buzatto AZ et al (2013) Metabolomic investigation of human diseases biomarkers by CE and LC coupled to MS. Electrophoresis 35(9):1285–1307Google Scholar
  25. 25.
    Mikus P, Marakova K (2009) Advanced CE for chiral analysis of drugs, metabolites, and biomarkers in biological samples. Electrophoresis 30(16):2773–2802PubMedCrossRefGoogle Scholar
  26. 26.
    Li M et al (2011) Recent advances of chromatography and mass spectrometry in lipidomics. Anal Bioanal Chem 399(1):243–249PubMedCrossRefGoogle Scholar
  27. 27.
    Monton MR, Soga T (2007) Metabolome analysis by capillary electrophoresis-mass spectrometry. J Chromatogr A 1168(1–2):237–246, discussion 236PubMedCrossRefGoogle Scholar
  28. 28.
    Baena B, Cifuentes A, Barbas C (2005) Analysis of carboxylic acids in biological fluids by capillary electrophoresis. Electrophoresis 26(13):2622–2636PubMedCrossRefGoogle Scholar
  29. 29.
    Szpunar J (2005) Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst 130(4):442–465PubMedCrossRefGoogle Scholar
  30. 30.
    Kraly JR et al (2009) Review: microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta 653(1):23–35PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Garcia DE et al (2008) Separation and mass spectrometry in microbial metabolomics. Curr Opin Microbiol 11(3):233–239PubMedCrossRefGoogle Scholar
  32. 32.
    Xiayan L, Legido-Quigley C (2008) Advances in separation science applied to metabonomics. Electrophoresis 29(18):3724–3736PubMedCrossRefGoogle Scholar
  33. 33.
    Harada K, Fukusaki E (2009) Profiling of primary metabolite by means of capillary electrophoresis-mass spectrometry and its application for plant science. Plant Biotechnol 26(1):47–52CrossRefGoogle Scholar
  34. 34.
    Schmitt-Kopplin P, Frommberger M (2003) Capillary electrophoresis-mass spectrometry: 15 years of developments and applications. Electrophoresis 24(22–23):3837–3867PubMedCrossRefGoogle Scholar
  35. 35.
    Zhao SS et al (2012) Capillary electrophoresis-mass spectrometry for analysis of complex samples. Proteomics 12(19–20):2991–3012PubMedCrossRefGoogle Scholar
  36. 36.
    Poinsot V et al (2014) Recent advances in amino acid analysis by capillary electromigration methods, 2011-2013. Electrophoresis 35(1):50–68PubMedCrossRefGoogle Scholar
  37. 37.
    Kuehnbaum NL, Britz-McKibbin P (2013) New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem Rev 113(4):2437–2468PubMedCrossRefGoogle Scholar
  38. 38.
    Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69(19):3225–3243PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ban E et al (2012) Growing trend of CE at the omics level: the frontier of systems biology—an update. Electrophoresis 33(1):2–13PubMedCrossRefGoogle Scholar
  40. 40.
    Babu S et al (2006) Capillary electrophoresis at the omics level: towards systems biology. Electrophoresis 27(1):97–110CrossRefGoogle Scholar
  41. 41.
    Garcia-Canas V et al (2011) MS-based analytical methodologies to characterize genetically modified crops. Mass Spectrom Rev 30(3):396–416PubMedCrossRefGoogle Scholar
  42. 42.
    Mishur RJ, Rea SL (2012) Applications of mass spectrometry to metabolomics and metabonomics: detection of biomarkers of aging and of age-related diseases. Mass Spectrom Rev 31(1):70–95PubMedCrossRefGoogle Scholar
  43. 43.
    Guttman A, Varoglu M, Khandurina J (2004) Multidimensional separations in the pharmaceutical arena. Drug Discov Today 9(3):136–144PubMedCrossRefGoogle Scholar
  44. 44.
    Mozzi F et al (2013) Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Res Int 54(1):1152–1161CrossRefGoogle Scholar
  45. 45.
    Armitage EG, Barbas C (2014) Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal 87:1–11PubMedCrossRefGoogle Scholar
  46. 46.
    Klampfl CW (2007) Determination of organic acids by CE and CEC methods. Electrophoresis 28(19):3362–3378PubMedCrossRefGoogle Scholar
  47. 47.
    Kok MG et al (2013) Anionic metabolic profiling of urine from antibiotic-treated rats by capillary electrophoresis-mass spectrometry. Anal Bioanal Chem 405(8):2585–2594PubMedCrossRefGoogle Scholar
  48. 48.
    Kumar BS et al (2012) Discovery of common urinary biomarkers for hepatotoxicity induced by carbon tetrachloride, acetaminophen and methotrexate by mass spectrometry-based metabolomics. J Appl Toxicol 32(7):505–520PubMedCrossRefGoogle Scholar
  49. 49.
    Kumar BS et al (2010) Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach. Anal Chim Acta 661(1):47–59PubMedCrossRefGoogle Scholar
  50. 50.
    Yang WC, Regnier FE, Adamec J (2008) Comparative metabolite profiling of carboxylic acids in rat urine by CE-ESI MS/MS through positively pre-charged and H-2-coded derivatization. Electrophoresis 29(22):4549–4560PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Godzien J et al (2011) Effect of a nutraceutical treatment on diabetic rats with targeted and CE-MS non-targeted approaches. Metabolomics 9(S1):188–202CrossRefGoogle Scholar
  52. 52.
    Zeng J et al (2013) Effect of bisphenol A on rat metabolic profiling studied by using capillary electrophoresis time-of-flight mass spectrometry. Environ Sci Technol 47(13):7457–7465PubMedCrossRefGoogle Scholar
  53. 53.
    Vallejo M et al (2008) New perspective of diabetes response to an antioxidant treatment through metabolic fingerprinting of urine by capillary electrophoresis. J Chromatogr A 1187(1–2):267–274PubMedCrossRefGoogle Scholar
  54. 54.
    Barbas C et al (2008) Capillary electrophoresis as a metabolomic tool in antioxidant therapy studies. J Pharm Biomed Anal 47(2):388–398PubMedCrossRefGoogle Scholar
  55. 55.
    Ruperez FJ et al (2009) Dunaliella salina extract effect on diabetic rats: metabolic fingerprinting and target metabolite analysis. J Pharm Biomed Anal 49(3):786–792PubMedCrossRefGoogle Scholar
  56. 56.
    Nevedomskaya E et al (2010) CE-MS for metabolic profiling of volume-limited urine samples: application to accelerated aging TTD mice. J Proteome Res 9(9):4869–4874PubMedCrossRefGoogle Scholar
  57. 57.
    Garcia-Perez I et al (2012) Urinary metabolic phenotyping the slc26a6 (chloride-oxalate exchanger) null mouse model. J Proteome Res 11(9):4425–4435PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Angulo S et al (2009) The autocorrelation matrix probing biochemical relationships after metabolic fingerprinting with CE. Electrophoresis 30(7):1221–1227PubMedCrossRefGoogle Scholar
  59. 59.
    Garcia-Perez I et al (2008) Metabolic fingerprinting of Schistosoma mansoni infection in mice urine with capillary electrophoresis. Electrophoresis 29(15):3201–3206PubMedCrossRefGoogle Scholar
  60. 60.
    Barbas C et al (1998) Quantitative determination of short-chain organic acids in urine by capillary electrophoresis. Clin Chem 44(6 Pt 1):1340–1342PubMedGoogle Scholar
  61. 61.
    Chen JL et al (2012) Urine metabolite profiling of human colorectal cancer by capillary electrophoresis mass spectrometry based on MRB. Gastroenterol Res Pract 2012:125890PubMedPubMedCentralGoogle Scholar
  62. 62.
    Chen JL, Fan J, Lu XJ (2013) CE-MS based on moving reaction boundary method for urinary metabolomic analysis of gastric cancer patients. Electrophoresis 35(7):1032–1039Google Scholar
  63. 63.
    Szymanska E et al (2010) Altered levels of nucleoside metabolite profiles in urogenital tract cancer measured by capillary electrophoresis. J Pharm Biomed Anal 53(5):1305–1312PubMedCrossRefGoogle Scholar
  64. 64.
    Soga T et al (2004) Qualitative and quantitative analysis of amino acids by capillary electrophoresis-electrospray ionization-tandem mass spectrometry. Electrophoresis 25(13):1964–1972PubMedCrossRefGoogle Scholar
  65. 65.
    Alberice JV et al (2013) Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry metabolomics approach. J Chromatogr A 1318:163–170PubMedCrossRefGoogle Scholar
  66. 66.
    Hirayama A, Tomita M, Soga T (2012) Sheathless capillary electrophoresis-mass spectrometry with a high-sensitivity porous sprayer for cationic metabolome analysis. Analyst 137(21):5026–5033PubMedCrossRefGoogle Scholar
  67. 67.
    Allard E et al (2008) Comparing capillary electrophoresis-mass spectrometry fingerprints of urine samples obtained after intake of coffee, tea, or water. Anal Chem 80(23):8946–8955PubMedCrossRefGoogle Scholar
  68. 68.
    Ramautar R et al (2012) Enhancing the coverage of the urinary metabolome by sheathless capillary electrophoresis-mass spectrometry. Anal Chem 84(2):885–892PubMedCrossRefGoogle Scholar
  69. 69.
    Kok MG, de Jong GJ, Somsen GW (2011) Sensitivity enhancement in capillary electrophoresis-mass spectrometry of anionic metabolites using a triethylamine-containing background electrolyte and sheath liquid. Electrophoresis 32(21):3016–3024PubMedCrossRefGoogle Scholar
  70. 70.
    Balderas C et al (2013) Plasma and urine metabolic fingerprinting of type 1 diabetic children. Electrophoresis 34(19):2882–2890PubMedGoogle Scholar
  71. 71.
    Balderas C et al (2010) Metabolomic approach to the nutraceutical effect of rosemary extract plus Omega-3 PUFAs in diabetic children with capillary electrophoresis. J Pharm Biomed Anal 53(5):1298–1304PubMedCrossRefGoogle Scholar
  72. 72.
    Ramautar R et al (2009) Explorative analysis of urine by capillary electrophoresis-mass spectrometry in chronic patients with complex regional pain syndrome. J Proteome Res 8(12):5559–5567PubMedCrossRefGoogle Scholar
  73. 73.
    Uehara T et al (2013) Identification of metabolomic biomarkers for drug-induced acute kidney injury in rats. J Appl Toxicol 34(10):1087–1095Google Scholar
  74. 74.
    Akiyama Y et al (2012) A metabolomic approach to clarifying the effect of AST-120 on 5/6 nephrectomized rats by capillary electrophoresis with mass spectrometry (CE-MS). Toxins (Basel) 4(11):1309–1322CrossRefGoogle Scholar
  75. 75.
    Toyohara T et al (2011) Metabolomic profiling of the autosomal dominant polycystic kidney disease rat model. Clin Exp Nephrol 15(5):676–687PubMedCrossRefGoogle Scholar
  76. 76.
    Kuwabara H et al (2013) Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study. PLoS One 8(9), e73814PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    D’Agostino LA et al (2011) Comprehensive plasma thiol redox status determination for metabolomics. J Proteome Res 10(2):592–603PubMedCrossRefGoogle Scholar
  78. 78.
    Takeuchi K et al (2013) Metabolic profiling to identify potential serum biomarkers for gastric ulceration induced by nonsteroid anti-inflammatory drugs. J Proteome Res 12(3):1399–1407PubMedCrossRefGoogle Scholar
  79. 79.
    Takeuchi K et al (2014) Metabolomic analysis of the effects of omeprazole and famotidine on aspirin-induced gastric injury. Metabolomics 10:995–1004Google Scholar
  80. 80.
    Naz S et al (2013) Method development and validation for rat serum fingerprinting with CE-MS: application to ventilator-induced-lung-injury study. Anal Bioanal Chem 405(14):4849–4858PubMedCrossRefGoogle Scholar
  81. 81.
    Tripodi VP et al (2003) Simultaneous determination of free and conjugated bile acids in serum by cyclodextrin-modified micellar electrokinetic chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 785(1):147–155PubMedCrossRefGoogle Scholar
  82. 82.
    Castano G et al (2006) Bile acid profiles by capillary electrophoresis in intrahepatic cholestasis of pregnancy. Clin Sci (Lond) 110(4):459–465CrossRefGoogle Scholar
  83. 83.
    Soga T et al (2011) Serum metabolomics reveals gamma-glutamyl dipeptides as biomarkers for discrimination among different forms of liver disease. J Hepatol 55(4):896–905PubMedCrossRefGoogle Scholar
  84. 84.
    Saito T et al (2013) Dynamics of serum metabolites in patients with chronic hepatitis C receiving pegylated interferon plus ribavirin: a metabolomics analysis. Metabolism 62(11):1577–1586PubMedCrossRefGoogle Scholar
  85. 85.
    Hirayama A et al (2012) Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Anal Bioanal Chem 404(10):3101–3109PubMedCrossRefGoogle Scholar
  86. 86.
    Lee R, Britz-McKibbin P (2010) Metabolomic studies of radiation-induced apoptosis of human leukocytes by capillary electrophoresis-mass spectrometry and flow cytometry: adaptive cellular responses to ionizing radiation. Electrophoresis 31(14):2328–2337PubMedCrossRefGoogle Scholar
  87. 87.
    Lee R et al (2010) Differential metabolomics for quantitative assessment of oxidative stress with strenuous exercise and nutritional intervention: thiol-specific regulation of cellular metabolism with N-acetyl-L-cysteine pretreatment. Anal Chem 82(7):2959–2968PubMedCrossRefGoogle Scholar
  88. 88.
    Karasawa T et al (2013) Metabolome analysis of erythrocytes from patients with chronic hepatitis C reveals the etiology of ribavirin-induced hemolysis. Int J Med Sci 10(11):1575–1577PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Soga T et al (2006) Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 281(24):16768–16776PubMedCrossRefGoogle Scholar
  90. 90.
    Soga T et al (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74(10):2233–2239PubMedCrossRefGoogle Scholar
  91. 91.
    Fustin JM et al (2012) Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites. Cell Rep 1(4):341–349PubMedCrossRefGoogle Scholar
  92. 92.
    Sugiura Y, Taguchi R, Setou M (2011) Visualization of spatiotemporal energy dynamics of hippocampal neurons by mass spectrometry during a kainate-induced seizure. PLoS One 6(3):e17952PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Soga T et al (2009) Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal Chem 81(15):6165–6174PubMedCrossRefGoogle Scholar
  94. 94.
    Naz S, Garcia A, Barbas C (2013) Multiplatform analytical methodology for metabolic fingerprinting of lung tissue. Anal Chem 85(22):10941–10948PubMedCrossRefGoogle Scholar
  95. 95.
    Saheki T et al (2011) Metabolomic analysis reveals hepatic metabolite perturbations in citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mice, a model of human citrin deficiency. Mol Genet Metab 104(4):492–500PubMedCrossRefGoogle Scholar
  96. 96.
    Maekawa K et al (2013) Global metabolomic analysis of heart tissue in a hamster model for dilated cardiomyopathy. J Mol Cell Cardiol 59:76–85PubMedCrossRefGoogle Scholar
  97. 97.
    Papaspyridonos K et al (2008) Fingerprinting of human bile during liver transplantation by capillary electrophoresis. J Sep Sci 31(16–17):3058–3064PubMedCrossRefGoogle Scholar
  98. 98.
    Hirayama A et al (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69(11):4918–4925PubMedCrossRefGoogle Scholar
  99. 99.
    Kami K et al (2013) Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry. Metabolomics 9(2):444–453PubMedCrossRefGoogle Scholar
  100. 100.
    Ibanez C et al (2012) Toward a predictive model of Alzheimer’s disease progression using capillary electrophoresis-mass spectrometry metabolomics. Anal Chem 84(20):8532–8540PubMedCrossRefGoogle Scholar
  101. 101.
    Ramautar R et al (2012) Metabolic profiling of mouse cerebrospinal fluid by sheathless CE-MS. Anal Bioanal Chem 404(10):2895–2900PubMedCrossRefGoogle Scholar
  102. 102.
    Matsumoto M et al (2012) Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep 2:233PubMedPubMedCentralGoogle Scholar
  103. 103.
    Ohashi Y et al (2008) Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS. Mol Biosyst 4(2):135–147PubMedCrossRefGoogle Scholar
  104. 104.
    Ooga T et al (2011) Metabolomic anatomy of an animal model revealing homeostatic imbalances in dyslipidaemia. Mol Biosyst 7(4):1217–1223PubMedCrossRefGoogle Scholar
  105. 105.
    Soga T et al (2007) Analysis of nucleotides by pressure-assisted capillary electrophoresis-mass spectrometry using silanol mask technique. J Chromatogr A 1159(1–2):125–133PubMedCrossRefGoogle Scholar
  106. 106.
    Soga T, Heiger DN (2000) Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 72(6):1236–1241PubMedCrossRefGoogle Scholar
  107. 107.
    Sugimoto M et al (2010) Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 6(1):78–95PubMedCrossRefGoogle Scholar
  108. 108.
    Sugimoto M et al (2013) Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. Metabolomics 9(2):454–463CrossRefGoogle Scholar
  109. 109.
    Osanai T et al (2014) Capillary electrophoresis-mass spectrometry reveals the distribution of carbon metabolites during nitrogen starvation in Synechocystis sp. PCC 6803. Environ Microbiol 16(2):512–524PubMedCrossRefGoogle Scholar
  110. 110.
    Janini GM et al (2003) A sheathless nanoflow electrospray interface for on-line capillary electrophoresis mass spectrometry. Anal Chem 75(7):1615–1619PubMedCrossRefGoogle Scholar
  111. 111.
    Edwards JL et al (2006) Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. J Chromatogr A 1106(1–2):80–88PubMedCrossRefGoogle Scholar
  112. 112.
    Baidoo EE et al (2008) Capillary electrophoresis-fourier transform ion cyclotron resonance mass spectrometry for the identification of cationic metabolites via a pH-mediated stacking-transient isotachophoretic method. Anal Chem 80(9):3112–3122PubMedCrossRefGoogle Scholar
  113. 113.
    Soo EC et al (2004) Selective detection and identification of sugar nucleotides by CE-electrospray-MS and its application to bacterial metabolomics. Anal Chem 76(3):619–626PubMedCrossRefGoogle Scholar
  114. 114.
    McNally DJ et al (2006) Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach. J Biol Chem 281(27):18489–18498PubMedCrossRefGoogle Scholar
  115. 115.
    Hui JP et al (2007) Selective detection of sugar phosphates by capillary electrophoresis/mass spectrometry and its application to an engineered E. coli host. Chembiochem 8(10):1180–1188PubMedCrossRefGoogle Scholar
  116. 116.
    Reid CW et al (2008) Affinity-capture tandem mass spectrometric characterization of polyprenyl-linked oligosaccharides: tool to study protein N-glycosylation pathways. Anal Chem 80(14):5468–5475PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Arellano M et al (2000) Routine analysis of short-chain fatty acids for anaerobic bacteria identification using capillary electrophoresis and indirect ultraviolet detection. J Chromatogr B 741(1):89–100CrossRefGoogle Scholar
  118. 118.
    Harada K et al (2008) Quantitative analysis of anionic metabolites for Catharanthus roseus by capillary electrophoresis using sulfonated capillary coupled with electrospray ionization-tandem mass spectrometry. J Biosci Bioeng 105(3):249–260PubMedCrossRefGoogle Scholar
  119. 119.
    Musilova J, Klejdus B, Glatz Z (2013) Simultaneous quantification of energetically important metabolites in various cell types by CZE. J Sep Sci 36(23):3807–3812PubMedCrossRefGoogle Scholar
  120. 120.
    Gao P et al (2007) Investigation on response of the metabolites in tricarboxylic acid cycle of Escherichi coli and Pseudomonas aeruginosa to antibiotic perturbation by capillary electrophoresis. J Pharm Biomed Anal 44(1):180–187PubMedCrossRefGoogle Scholar
  121. 121.
    Soga T et al (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2(5):488–494PubMedCrossRefGoogle Scholar
  122. 122.
    Hardenborg E et al (2003) Novel polyamine coating providing non-covalent deactivation and reversed electroosmotic flow of fused-silica capillaries for capillary electrophoresis. J Chromatogr A 1003(1–2):217–221PubMedCrossRefGoogle Scholar
  123. 123.
    Timischl B et al (2008) Development of a quantitative, validated capillary electrophoresis-time of flight-mass spectrometry method with integrated high-confidence analyte identification for metabolomics. Electrophoresis 29(10):2203–2214PubMedCrossRefGoogle Scholar
  124. 124.
    Qin XY et al (2013) The effect of acyclic retinoid on the metabolomic profiles of hepatocytes and hepatocellular carcinoma cells. PLoS One 8(12):e82860PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Saito N et al (2009) Metabolite profiling reveals YihU as a novel hydroxybutyrate dehydrogenase for alternative succinic semialdehyde metabolism in Escherichia coli. J Biol Chem 284(24):16442–16451PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Martinez P et al (2013) Metabolomic study of Chilean biomining bacteria Acidithiobacillus ferrooxidans strain Wenelen and Acidithiobacillus thiooxidans strain Licanantay. Metabolomics 9(1):247–257PubMedCrossRefGoogle Scholar
  127. 127.
    Hashino E et al (2013) Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis. Mol Oral Microbiol 28(6):435–451PubMedCrossRefGoogle Scholar
  128. 128.
    Robert M et al (2012) Extracellular metabolite dynamics and temporal organization of metabolic function in E. coli. Proceedings of IEEE/ICME International Conference on Complex Medical Engineering (CME 2012). 197–202Google Scholar
  129. 129.
    Canuto GA et al (2012) CE-ESI-MS metabolic fingerprinting of Leishmania resistance to antimony treatment. Electrophoresis 33(12):1901–1910PubMedCrossRefGoogle Scholar
  130. 130.
    Amantonico A, Urban PL, Zenobi R (2009) Facile analysis of metabolites by capillary electrophoresis coupled to matrix-assisted laser desorption/ionization mass spectrometry using target plates with polysilazane nanocoating and grooves. Analyst 134(8):1536–1540PubMedCrossRefGoogle Scholar
  131. 131.
    Tanaka Y et al (2008) Development of a capillary electrophoresis-mass spectrometry method using polymer capillaries for metabolomic analysis of yeast. Electrophoresis 29(10):2016–2023PubMedCrossRefGoogle Scholar
  132. 132.
    Buscher JM et al (2009) Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal Chem 81(6):2135–2143PubMedCrossRefGoogle Scholar
  133. 133.
    Sasidharan K et al (2012) A yeast metabolite extraction protocol optimised for time-series analyses. PLoS One 7(8):e44283PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Matsushika A et al (2013) Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. PLoS One 8(7):e69005PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Tanaka Y et al (2007) Quantitative analysis of sulfur-related metabolites during cadmium stress response in yeast by capillary electrophoresis-mass spectrometry. J Pharm Biomed Anal 44(2):608–613PubMedCrossRefGoogle Scholar
  136. 136.
    Miyagi A et al (2013) Metabolome analysis of food-chain between plants and insects. Metabolomics 9(6):1254–1261CrossRefGoogle Scholar
  137. 137.
    Sato S et al (2004) Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J 40(1):151–163PubMedCrossRefGoogle Scholar
  138. 138.
    Sato S et al (2008) Time-resolved metabolomics reveals metabolic modulation in rice foliage. BMC Syst Biol 2:51PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Leon C et al (2009) Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction. J Chromatogr A 1216(43):7314–7323PubMedCrossRefGoogle Scholar
  140. 140.
    Takahashi H et al (2011) Comparative metabolomics of developmental alterations caused by mineral deficiency during in vitro culture of Gentiana triflora. Metabolomics 8(1):154–163CrossRefGoogle Scholar
  141. 141.
    Delatte TL et al (2011) Capillary electrophoresis-mass spectrometry analysis of trehalose-6-phosphate in Arabidopsis thaliana seedlings. Anal Bioanal Chem 400(4):1137–1144PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Warren CR, Aranda I, Cano FJ (2011) Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress. Metabolomics 8(2):186–200CrossRefGoogle Scholar
  143. 143.
    Levandi T et al (2008) Capillary electrophoresis time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize. Anal Chem 80(16):6329–6335PubMedCrossRefGoogle Scholar
  144. 144.
    Cho K et al (2008) Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res 7(7):2980–2998PubMedCrossRefGoogle Scholar
  145. 145.
    Iino K et al (2011) Profiling of the charged metabolites of traditional herbal medicines using capillary electrophoresis time-of-flight mass spectrometry. Metabolomics 8(1):99–108CrossRefGoogle Scholar
  146. 146.
    Tseng YJ et al (2013) Metabolomic characterization of rhubarb species by capillary electrophoresis and ultra-high-pressure liquid chromatography. Electrophoresis 34(19):2918–2927PubMedGoogle Scholar
  147. 147.
    Urano K et al (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57(6):1065–1078PubMedCrossRefGoogle Scholar
  148. 148.
    Williams BJ et al (2007) Amino acid profiling in plant cell cultures: an inter-laboratory comparison of CE-MS and GC-MS. Electrophoresis 28(9):1371–1379PubMedCrossRefGoogle Scholar
  149. 149.
    Sato D et al (2013) Metabolomic profiling of the response of susceptible and resistant soybean strains to foxglove aphid, Aulacorthum solani Kaltenbach. J Chromatogr B Analyt Technol Biomed Life Sci 925:95–103PubMedCrossRefGoogle Scholar
  150. 150.
    Lapainis T, Rubakhin SS, Sweedler JV (2009) Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal Chem 81(14):5858–5864PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Kim J et al (2012) GC-TOF-MS- and CE-TOF-MS-based metabolic profiling of cheonggukjang (fast-fermented bean paste) during fermentation and its correlation with metabolic pathways. J Agric Food Chem 60(38):9746–9753PubMedCrossRefGoogle Scholar
  152. 152.
    Sugimoto M et al (2012) Changes in the charged metabolite and sugar profiles of pasteurized and unpasteurized Japanese sake with storage. J Agric Food Chem 60(10):2586–2593PubMedCrossRefGoogle Scholar
  153. 153.
    Yassine MM et al (2012) Identification of weak and strong organic acids in atmospheric aerosols by capillary electrophoresis/mass spectrometry and ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 84(15):6586–6594PubMedCrossRefGoogle Scholar
  154. 154.
    Sakagami H et al (2013) Metabolomic profiling of sodium fluoride-induced cytotoxicity in an oral squamous cell carcinoma cell line. Metabolomics 10(2):270–279Google Scholar
  155. 155.
    Kwon HJ, Ohmiya Y (2013) Metabolomic analysis of differential changes in metabolites during ATP oscillations in chondrogenesis. Biomed Res Int 2013:213972PubMedPubMedCentralGoogle Scholar
  156. 156.
    Sugimoto M et al (2012) Non-targeted metabolite profiling in activated macrophage secretion. Metabolomics 8(4):624–633CrossRefGoogle Scholar
  157. 157.
    Hayashi K et al (2011) Use of serum and urine metabolome analysis for the detection of metabolic changes in patients with stage 1-2 chronic kidney disease. Nephro Urol Mon 3:164–171Google Scholar
  158. 158.
    Shima N et al (2011) Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat. Toxicology 287(1–3):29–37PubMedCrossRefGoogle Scholar
  159. 159.
    Bardsley WG, Ashford JS, Hill CM (1971) Synthesis and oxidation of aminoalkyl-onium compounds by pig kidney diamine oxidase. Biochem J 122(4):557–567PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Environmental SciencesHelmholtz Zentrum MünchenNeuherbergGermany
  2. 2.Department of Environmental SciencesHelmholtz Zentrum MunchenNeuherbergGermany

Personalised recommendations