Plant Synthetic Promoters pp 219-232

Part of the Methods in Molecular Biology book series (MIMB, volume 1482) | Cite as

GenoCAD Plant Grammar to Design Plant Expression Vectors for Promoter Analysis

  • Anna Coll
  • Mandy L. Wilson
  • Kristina Gruden
  • Jean Peccoud
Protocol

Abstract

With the rapid advances in prediction tools for discovery of new promoters and their cis-elements, there is a need to improve plant expression methodologies in order to facilitate a high-throughput functional validation of these promoters in planta. The promoter-reporter analysis is an indispensible approach for characterization of plant promoters. It requires the design of complex plant expression vectors, which can be challenging. Here, we describe the use of a plant grammar implemented in GenoCAD that will allow the users to quickly design constructs for promoter analysis experiments but also for other in planta functional studies. The GenoCAD plant grammar includes a library of plant biological parts organized in structural categories to facilitate their use and management and a set of rules that guides the process of assembling these biological parts into large constructs.

Key words

Synthetic biology GenoCAD Plant grammar Plant expression vectors Plant promoters 

References

  1. 1.
    Zou C, Sun K, Mackaluso JD et al (2011) Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108:14992–14997. doi:10.1073/pnas.1103202108 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yamamoto YY, Yoshioka Y, Hyakumachi M et al (2011) Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data. BMC Plant Biol 11:39. doi:10.1186/1471-2229-11-39 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cai Y, Hartnett B, Gustafsson C, Peccoud J (2007) A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts. Bioinformatics 23:2760–2767. doi:10.1093/bioinformatics/btm446 CrossRefPubMedGoogle Scholar
  4. 4.
    Wilson ML, Okumoto S, Adam L, Peccoud J (2014) Development of a domain-specific genetic language to design Chlamydomonas reinhardtii expression vectors. Bioinformatics 30:251–257. doi:10.1093/bioinformatics/btt646 CrossRefPubMedGoogle Scholar
  5. 5.
    Overend C, Yuan L, Peccoud J (2012) The synthetic futures of vesicular stomatitis virus. Trends Biotechnol 30:497–498. doi:10.1016/j.tibtech.2012.06.002 CrossRefPubMedGoogle Scholar
  6. 6.
    Adames NR, Wilson ML, Fang G et al (2015) GenoLIB: a database of biological parts derived from a library of common plasmid features. Nucleic Acids Res 43:4823–4832. doi:10.1093/nar/gkv272 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Purcell O, Peccoud J, Lu TK (2014) Rule-based design of synthetic transcription factors in eukaryotes. ACS Synth Biol 3(10):737–744. doi:10.1021/sb400134k CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Coll A, Wilson ML, Gruden K, Peccoud J (2015) Rule-based design of plant expression vectors using GenoCAD. PLoS One 10, e0132502. doi:10.1371/journal.pone.0132502 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195. doi:10.1038/nature10158 CrossRefGoogle Scholar
  10. 10.
    Lazar A, Coll A, Dobnik D et al (2014) Involvement of potato (Solanum tuberosum L.) MKK6 in response to potato virus Y. PLoS One 9, e104553. doi:10.1371/journal.pone.0104553 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatilepPZP family ofAgrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anna Coll
    • 1
  • Mandy L. Wilson
    • 2
  • Kristina Gruden
    • 1
  • Jean Peccoud
    • 3
    • 4
  1. 1.Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
  2. 2.Biocomplexity Institute of Virginia TechBlacksburgUSA
  3. 3.Department of Chemical & Biological EngineeringColorado State UniversityFort CollinsUSA
  4. 4.GenoFAB, LLCSan FranciscoUSA

Personalised recommendations