Advertisement

Wnt Signaling pp 127-140 | Cite as

Monitoring Wnt/β-Catenin Signaling in Skin

  • Amy T. Ku
  • Qi Miao
  • Hoang NguyenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1481)

Abstract

Wnt signaling through β-catenin plays a crucial role in skin development and homeostasis. Disruption or hyperactivation of this pathway results in skin defects and diseases (Lim and Nusse, Cold Spring Harb Perspect Biol 5(2), 2013). Monitoring Wnt signaling in skin under normal and abnormal conditions is therefore critical to understand the role of this pathway in development and homeostasis.

In this chapter, we provide methods to detect Wnt/β-catenin (canonical) signaling in the skin. We present a comprehensive list of Wnt reporter mice and detail the processing of skin tissue to detect reporter genes. From this list, we focus on the three most recent lines that, according to reports, are the most sensitive in skin. Additionally, we describe a protocol to detect nuclear β-catenin, a hallmark of active Wnt signaling, although this technique should be used with caution due to its limited sensitivity. The techniques outlined below will be useful for detecting active Wnt signaling in skin.

Key words

Skin Epidermis Hair follicles Wnt reporter mice 

References

  1. 1.
    Blanpain C, Fuchs E (2006) Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 22:339–373CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schneider MR, Schmidt-Ullrich R, Paus R (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19(3):R132–R142CrossRefPubMedGoogle Scholar
  3. 3.
    Tumbar T et al (2004) Defining the epithelial stem cell niche in skin. Science 303(5656): 359–363CrossRefPubMedGoogle Scholar
  4. 4.
    Ito M et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354CrossRefPubMedGoogle Scholar
  5. 5.
    Levy V et al (2007) Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21:1–9Google Scholar
  6. 6.
    Snippert HJ et al (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327(5971):1385–1389CrossRefPubMedGoogle Scholar
  7. 7.
    Mascre G et al (2012) Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489(7415):257–262CrossRefPubMedGoogle Scholar
  8. 8.
    Page ME et al (2013) The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell 13(4):471–482CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Howard JM et al (2014) Tcf3 expression marks both stem and progenitor cells in multiple epithelia. Development 141(16):3143–3152CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lim X, Nusse R (2013) Wnt signaling in skin development, homeostasis, and disease. Cold Spring Harb Perspect Biol 5(2)Google Scholar
  11. 11.
    Chen D et al (2012) Dermal beta-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development 139(8):1522–1533CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Huelsken J et al (2001) beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105(4):533–545CrossRefPubMedGoogle Scholar
  13. 13.
    Lowry WE et al (2005) Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 19(13):1596–1611CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Enshell-Seijffers D et al (2010) Beta-catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching. Proc Natl Acad Sci U S A 107(50):21564–21569CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tsai SY et al (2014) Wnt/beta-catenin signaling in dermal condensates is required for hair follicle formation. Dev Biol 385(2):179–188CrossRefPubMedGoogle Scholar
  16. 16.
    Lim X et al (2013) Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 342(6163):1226–1230CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Choi YS et al (2013) Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 13(6): 720–733CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126(20):4557–4568PubMedGoogle Scholar
  19. 19.
    Staal FJ et al (2001) Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol 31(1): 285–293CrossRefPubMedGoogle Scholar
  20. 20.
    Maretto S et al (2003) Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci U S A 100(6):3299–3304CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mohamed OA, Clarke HJ, Dufort D (2004) Beta-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Dev Dyn 231(2):416–424CrossRefPubMedGoogle Scholar
  22. 22.
    Nakaya MA et al (2005) Wnt3a links left-right determination with segmentation and anteroposterior axis elongation. Development 132(24):5425–5436CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Moriyama A et al (2007) GFP transgenic mice reveal active canonical Wnt signal in neonatal brain and in adult liver and spleen. Genesis 45(2):90–100CrossRefPubMedGoogle Scholar
  24. 24.
    Currier N et al (2010) Dynamic expression of a LEF-EGFP Wnt reporter in mouse development and cancer. Genesis 48(3):183–194PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ferrer-Vaquer A et al (2010) A sensitive and bright single-cell resolution live imaging reporter of Wnt/ss-catenin signaling in the mouse. BMC Dev Biol 10:121CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jho EH et al (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22(4):1172–1183CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lustig B et al (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22(4):1184–1193CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    van Amerongen R, Bowman AN, Nusse R (2012) Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11(3):387–400CrossRefPubMedGoogle Scholar
  29. 29.
    Muzumdar MD et al (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605CrossRefPubMedGoogle Scholar
  30. 30.
    Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Stem Cell and Regenerative Medicine CenterBaylor College of MedicineHoustonUSA
  2. 2.Center for Cell and Gene TherapyBaylor College of MedicineHoustonUSA
  3. 3.Interdepartmental Program in Translational Biology and Molecular MedicineBaylor College of MedicineHoustonUSA
  4. 4.Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonUSA
  5. 5.Department of DermatologyBaylor College of MedicineHoustonUSA
  6. 6.Program in Developmental BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations