Drosophila pp 53-78 | Cite as

The Q-System: A Versatile Expression System for Drosophila

Part of the Methods in Molecular Biology book series (MIMB, volume 1478)


Binary expression systems are flexible and versatile genetic tools in Drosophila. The Q-system is a recently developed repressible binary expression system that offers new possibilities for transgene expression and genetic manipulations. In this review chapter, we focus on current state-of-the-art Q-system tools and reagents. We also discuss in vivo applications of the Q-system, together with GAL4/UAS and LexA/LexAop systems, for simultaneous expression of multiple effectors, intersectional labeling, and clonal analysis.

Key words

Binary expression system Q-system QF QF2 QF2w LexAQF GAL4QF QUAS QS Quinic acid Chimeric transactivators Intersectional expression Mitotic recombination MARCM Mosaic analysis Neurospora crassa 



We thank Chun-Chieh Lin, Qili Liu, Sha Liu, Darya Task and Olga Markova for their helpful comments on the manuscript.


  1. 1.
    Ramaekers A, Quan X-J, Hassan BA (2012) Genetically encoded markers for drosophila neuroanatomy. In: The making and un-making of neuronal circuits in Drosophila. Humana Press, Totowa, NJ, pp 49–59CrossRefGoogle Scholar
  2. 2.
    Silbering AF, Bell R, Galizia CG, Benton R (2012) Calcium imaging of odor-evoked responses in the Drosophila antennal lobe. J Vis Exp:e2976Google Scholar
  3. 3.
    Simpson JH (2009) Mapping and manipulating neural circuits in the fly brain, Advances in genetics. Academic, New York, pp 79–143Google Scholar
  4. 4.
    Dietzl G, Chen D, Schnorrer F, Su K-C, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156CrossRefPubMedGoogle Scholar
  5. 5.
    Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15CrossRefPubMedGoogle Scholar
  6. 6.
    Sweeney ST, Broadie K, Keane J, Niemann H, O’Kane CJ (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351CrossRefPubMedGoogle Scholar
  7. 7.
    Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454:217–220CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lima SQ, Miesenbböck G (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121:141–152CrossRefPubMedGoogle Scholar
  9. 9.
    Paradis S, Sweeney ST, Davis GW (2001) Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30:737–749CrossRefPubMedGoogle Scholar
  10. 10.
    Hay BA, Wassarman DA, Rubin GM (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83:1253–1262CrossRefPubMedGoogle Scholar
  11. 11.
    Grether ME, Abrams JM, Agapite J, White K, Steller H (1995) The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 9:1694–1708CrossRefPubMedGoogle Scholar
  12. 12.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  13. 13.
    Lai S-L, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709CrossRefPubMedGoogle Scholar
  14. 14.
    Bello B, Resendez-Perez D, Gehring WJ (1998) Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator system. Development 125:2193–2202PubMedGoogle Scholar
  15. 15.
    Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Venken KJT, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Potter CJ, Luo L (2011) Using the Q system in Drosophila melanogaster. Nat Protoc 6:1105–1120CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science (New York, NY) 302:1765–1768CrossRefGoogle Scholar
  19. 19.
    Lue NF, Chasman DI, Buchman AR, Kornberg RD (1987) Interaction of GAL4 and GAL80 gene regulatory proteins in vitro. Mol Cell Biol 7:3446–3451CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sayeed O, Benzer S (1996) Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc Natl Acad Sci 93:6079–6084CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461CrossRefPubMedGoogle Scholar
  22. 22.
    Luo L, Lee T, Nardine T, Null B, Reuter J (1999) Using the MARCM system to positively mark mosaic clones in Drosophila. Dros Inf Serv 82:102–105Google Scholar
  23. 23.
    Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24:251–254CrossRefPubMedGoogle Scholar
  24. 24.
    del Valle Rodriguez A, Didiano D, Desplan C (2012) Power tools for gene expression and clonal analysis in Drosophila. Nat Methods 9:47–55CrossRefGoogle Scholar
  25. 25.
    Griffin R, Binari R, Perrimon N (2014) Genetic odyssey to generate marked clones in Drosophila mosaics. Proc Natl Acad Sci 111:4756–4763CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3:176–188CrossRefPubMedGoogle Scholar
  27. 27.
    Wei X, Potter CJ, Luo L, Shen K (2012) Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans. Nat Methods 9:391–395CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Subedi A, Macurak M, Gee ST, Monge E, Goll MG, Potter CJ, Parsons MJ, Halpern ME (2013) Adoption of the Q transcriptional regulatory system for zebrafish transgenesis. Methods (San Diego, Calif) 66(3):433–440CrossRefGoogle Scholar
  29. 29.
    Giles NH, Geever RF, Asch DK, Avalos J, Case ME (1991) The Wilhelmine E. Key 1989 invitational lecture. Organization and regulation of the qa (quinic acid) genes in Neurospora crassa and other fungi. J Hered 82:1–7CrossRefPubMedGoogle Scholar
  30. 30.
    Patel VB, Schweizer M, Dykstra CC, Kushner SR, Giles NH (1981) Genetic organization and transcriptional regulation in the qa gene cluster of Neurospora crassa. Proc Natl Acad Sci 78:5783–5787CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Baum JA, Geever R, Giles NH (1987) Expression of qa-1F activator protein: identification of upstream binding sites in the qa gene cluster and localization of the DNA-binding domain. Mol Cell Biol 7:1256–1266CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Huiet L, Giles NH (1986) The qa repressor gene of Neurospora crassa: wild-type and mutant nucleotide sequences. Proc Natl Acad Sci 83:3381–3385CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tsuji G, Kenmochi Y, Takano Y, Sweigard J, Farrall L, Furusawa I, Horino O, Kubo Y (2000) Novel fungal transcriptional activators, Cmr1p of Colletotrichum lagenarium and Pig1p of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(II)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol Microbiol 38:940–954CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang L, Bermingham-McDonogh O, Turcotte B, Guarente L (1993) Antibody-promoted dimerization bypasses the regulation of DNA binding by the heme domain of the yeast transcriptional activator HAP1. Proc Natl Acad Sci 90:2851–2855CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hidalgo P, Ansari AZ, Schmidt P, Hare B, Simkovich N, Farrell S, Shin EJ, Ptashne M, Wagner G (2001) Recruitment of the transcriptional machinery through GAL11P: structure and interactions of the GAL4 dimerization domain. Genes Dev 15:1007–1020CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Walters KJ, Dayie KT, Reece RJ, Ptashne M, Wagner G (1997) Structure and mobility of the PUT3 dimer. Nat Struct Mol Biol 4:744–750CrossRefGoogle Scholar
  37. 37.
    Kraulis PJ, Raine ARC, Gadhavi PL, Laue ED (1992) Structure of the DNA-binding domain of zinc GAL4. Nature 356:448–450CrossRefPubMedGoogle Scholar
  38. 38.
    Marmorstein R, Carey M, Ptashne M, Harrison SC (1992) DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356:408–414CrossRefPubMedGoogle Scholar
  39. 39.
    Ma J, Ptashne M (1987) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853CrossRefPubMedGoogle Scholar
  40. 40.
    Pfeiffer BD, Ngo T-TB, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Riabinina O, Luginbuhl D, Marr E, Liu S, Wu MN, Luo L, Potter CJ (2015) Improved and expanded Q-system reagents for genetic manipulations. Nat Methods 12:219–222CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gill G, Ptashne M (1987) Mutants of GAL4 protein altered in an activation function. Cell 51:121–126CrossRefPubMedGoogle Scholar
  43. 43.
    Kramer JM, Staveley BE (2003) GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet Mol Res 2:43–47PubMedGoogle Scholar
  44. 44.
    Shearin HK, Macdonald IS, Spector LP, Stowers RS (2014) Hexameric GFP and mCherry reporters for the Drosophila GAL4, Q, and LexA transcription systems. Genetics 196:951–960CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pfeiffer BD, Truman JW, Rubin GM (2012) Using translational enhancers to increase transgene expression in Drosophila. Proc Natl Acad Sci U S A 109:6626–6631CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Markstein M, Pitsouli C, Villalta C, Celniker SE, Perrimon N (2008) Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40:476–483CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Edwards TN, Meinertzhagen IA (2010) The functional organisation of glia in the adult brain of Drosophila and other insects. Prog Neurobiol 90:471–497CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the drosophila genome. Cell 59:499–509CrossRefPubMedGoogle Scholar
  49. 49.
    Bischof J, Basler K (2008) Recombinases and their use in gene activation, gene inactivation, and transgenesis. In: Drosophila. Humana Press, Totowa, NJ, pp 175–195CrossRefGoogle Scholar
  50. 50.
    Pitman JL, Huetteroth W, Burke CJ, Krashes MJ, Lai S-L, Lee T, Waddell S (2011) A pair of inhibitory neurons are required to sustain labile memory in the Drosophila mushroom body. Curr Biol 21:855–861CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hong W, Mosca TJ, Luo L (2012) Teneurins instruct synaptic partner matching in an olfactory map. Nature 484:201–207CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mosca TJ, Luo L (2014) Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins. eLife 3:03726CrossRefGoogle Scholar
  53. 53.
    Prieto-Godino LL, Diegelmann S, Bate M (2012) Embryonic origin of olfactory circuitry in Drosophila: contact and activity-mediated interactions pattern connectivity in the antennal lobe. PLoS Biol 10:e1001400CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang K, Gong J, Wang Q, Li H, Cheng Q, Liu Y, Zeng S, Wang Z (2014) Parallel pathways convey olfactory information with opposite polarities in Drosophila. Proc Natl Acad Sci 111:3164–3169CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Herrera SC, Martín R, Morata G (2013) Tissue homeostasis in the wing disc of Drosophila melanogaster: immediate response to massive damage during development. PLoS Genet 9:e1003446CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR (2013) Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79:111–127CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Parnas M, Lin AC, Huetteroth W, Miesenböck G (2013) Odor discrimination in Drosophila: from neural population codes to behavior. Neuron 79:932–944CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Li H, Li Y, Lei Z, Wang K, Guo A (2013) Transformation of odor selectivity from projection neurons to single mushroom body neurons mapped with dual-color calcium imaging. Proc Natl Acad Sci 110:12084–12089CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Liang L, Li Y, Potter CJ, Yizhar O, Deisseroth K, Tsien RW, Luo L (2013) GABAergic projection neurons route selective olfactory inputs to specific higher-order neurons. Neuron 79:917–931CrossRefPubMedGoogle Scholar
  60. 60.
    Strutz A, Soelter J, Baschwitz A, Farhan A, Grabe V, Rybak J, Knaden M, Schmuker M, Hansson BS, Sachse S (2014) Decoding odor quality and intensity in the Drosophila brain. eLife 3:e04147CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gao XJ, Riabinina O, Li J, Potter CJ, Clandinin TR, Luo L (2015) A transcriptional reporter of intracellular Ca2+ in Drosophila. Nat Neurosci 18:917–925CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Pfeiffer BD, Jenett A, Hammonds AS, Ngo T-TB, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A 105:9715–9720CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Venken KJT, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M, Carlson JW, Levis RW, Spradling AC, Hoskins RA et al (2011) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8:737–743CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Gohl DM, Silies MA, Gao XJ, Bhalerao S, Luongo FJ, Lin C-C, Potter CJ, Clandinin TR (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8:231–237CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Pérez-Garijo A, Fuchs Y, Steller H (2013) Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway. eLife 2:01004CrossRefGoogle Scholar
  66. 66.
    Diao F, Ironfield H, Diao F, Luan H, Shropshire W, Ewer J, Marr E, Potter CJ, Landgraf M, White BH (2015) Plug-and-play genetic access to Drosophila cell types using exchangeable exon cassettes. Cell Rep 10:1410–1421CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Griffin R, Sustar A, Bonvin M, Binari R, del Valle Rodriguez A, Hohl AM, Bateman JR, Villalta C, Heffern E, Grunwald D et al (2009) The twin spot generator for differential Drosophila lineage analysis. Nat Methods 6:600–602CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Yu H-H, Chen C-H, Shi L, Huang Y, Lee T (2009) Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat Neurosci 12:947–953CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Evans CJ, Olson JM, Ngo KT, Kim E, Lee NE, Kuoy E, Patananan AN, Sitz D, Tran P, Do M-T et al (2009) G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods 6:603–605CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hadjieconomou D, Rotkopf S, Alexandre C, Bell DM, Dickson BJ, Salecker I (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8:260–266CrossRefPubMedGoogle Scholar
  71. 71.
    Hampel S, Chung P, McKellar CE, Hall D, Looger LL, Simpson JH (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8:253–259CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kosman D, Small S (1997) Concentration-dependent patterning by an ectopic expression domain of the Drosophila gap gene knirps. Development 124:1343–1354PubMedGoogle Scholar
  73. 73.
    Stockinger P, Kvitsiani D, Rotkopf S, Tirián L, Dickson BJ (2005) Neural circuitry that governs Drosophila male courtship behavior. Cell 121:795–807CrossRefPubMedGoogle Scholar
  74. 74.
    Petersen LK, Stowers RS (2011) A gateway MultiSite recombination cloning toolkit. PLoS One 6:e24531CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Stowers RS (2011) An efficient method for recombineering GAL4 and QF drivers. Fly 5:371–378CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Shearin HK, Dvarishkis AR, Kozeluh CD, Stowers RS (2013) Expansion of the gateway multisite recombination cloning toolkit. PLoS One 8:e77724CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Zhang YV, Ni J, Montell C (2013) The molecular basis for attractive salt-taste coding in Drosophila. Science 340:1334–1338CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Zielke N, Korzelius J, van Straaten M, Bender K, Schuhknecht GFP, Dutta D, Xiang J, Edgar BA (2014) Fly-FUCCI: a versatile tool for studying cell proliferation in complex tissues. Cell Rep 7:588–598CrossRefPubMedGoogle Scholar
  79. 79.
    Cavanaugh DJ, Geratowski JD, Wooltorton JRA, Spaethling JM, Hector CE, Zheng X, Johnson EC, Eberwine JH, Sehgal A (2014) Identification of a circadian output circuit for rest:activity rhythms in Drosophila. Cell 157:689–701CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.The Solomon H. Snyder Department of Neuroscience, The Center for Sensory BiologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations