Drosophila pp 263-277 | Cite as

Chromatin Immunoprecipitation for Analyzing Transcription Factor Binding and Histone Modifications in Drosophila

  • Yad Ghavi-Helm
  • Bingqing Zhao
  • Eileen E. M. Furlong
Part of the Methods in Molecular Biology book series (MIMB, volume 1478)


Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) is an invaluable technique to assess transcription factor binding and histone modifications in a genome-wide manner, an essential step towards understanding the mechanisms that govern embryonic development. Here, we provide a detailed protocol for all steps involved in generating a ChIP-seq library, starting from embryo collection, fixation, chromatin preparation, immunoprecipitation, and finally library preparation. The protocol is optimized for Drosophila embryos, but can be easily adapted for any model organism. The resulting library is suitable for sequencing on an Illumina HiSeq or MiSeq platform.

Key words

Drosophila Transcription Development Chromatin immunoprecipitation ChIP-seq Next-generation sequencing 


  1. 1.
    Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N et al (2012) Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44(2):148–156CrossRefPubMedGoogle Scholar
  2. 2.
    Zinzen RP, Girardot C, Gagneur J, Braun M, Furlong EEM (2009) Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 462(7269):65–70CrossRefPubMedGoogle Scholar
  3. 3.
    Junion G, Spivakov M, Girardot C, Braun M, Gustafson EH, Birney E et al (2012) A transcription factor collective defines cardiac cell fate and reflects lineage history. Cell 148(3):473–486CrossRefPubMedGoogle Scholar
  4. 4.
    Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML et al (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330(6012):1787–1797CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ghavi-Helm Y, Furlong EEM (2012) Analyzing transcription factor occupancy during embryo development using ChIP-seq. In: Gheldof N, Deplancke B (eds) Gene regulatory networks. Humana Press, Totowa, NJ, pp 229–245CrossRefGoogle Scholar
  6. 6.
    Teves SS, Henikoff S (2011) Heat shock reduces stalled RNA polymerase II and nucleosome turnover genome-wide. Genes Dev 25(22):2387–2397CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kasinathan S, Orsi GA, Zentner GE, Ahmad K, Henikoff S (2014) High-resolution mapping of transcription factor binding sites on native chromatin. Nat Methods 11(2):203–209CrossRefPubMedGoogle Scholar
  8. 8.
    Bonn S, Zinzen RP, Perez-Gonzalez A, Riddell A, Gavin A-C, Furlong EEM (2012) Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP. Nat Protoc 7(5):978–994CrossRefPubMedGoogle Scholar
  9. 9.
    Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E et al (2014) Chromatin state dynamics during blood formation. Science 345(6199):943–949CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sisson JC (2007) Culturing large populations of Drosophila for protein biochemistry. Cold Spring Harb Protoc (3):pdb.top4Google Scholar
  11. 11.
    Campos-Ortéga JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, New York, 432 pCrossRefGoogle Scholar
  12. 12.
    Ng P, Wei C-L, Ruan Y (2001) Paired-end diTagging for transcriptome and genome analysis. In: Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  13. 13.
    Park PJ (2009) ChIP–seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yad Ghavi-Helm
    • 1
  • Bingqing Zhao
    • 1
  • Eileen E. M. Furlong
    • 1
  1. 1.European Molecular Biology LaboratoryGenome Biology UnitHeidelbergGermany

Personalised recommendations