Drosophila pp 215-226 | Cite as

Cultivation and Live Imaging of Drosophila Ovaries

  • Maureen Cetera
  • Lindsay Lewellyn
  • Sally Horne-BadovinacEmail author
Part of the Methods in Molecular Biology book series


Drosophila egg chamber development depends on a number of dynamic cellular processes that contribute to the final shape and function of the egg. We can gain insight into the mechanisms underlying these events by combining the power of Drosophila genetics and ex vivo live imaging. During developmental stages 1–8, egg chambers rotate around their anterior-posterior axes due to collective migration of the follicular epithelium. This motion is required for the proper elongation of the egg chamber. Here, we describe how to prepare stage 1–8 egg chambers for live imaging. We provide alternate protocols for the use of inverted or upright microscopes and describe ways to stabilize egg chambers to reduce drift during imaging. We discuss the advantages and limitations of these methods to assist the researcher in choosing an appropriate method based on experimental need and available resources.

Key words

Drosophila Egg chamber Follicle Live imaging Collective cell migration Morphogenesis 



We thank members of the Horne-Badovinac lab for input, Guillermina Ramirez-San Juan for the dissection video, and Claire Stevenson for the images in Fig. 1c. M.C. was supported by NIH T32 GM007183 and work in the Horne-Badovinac lab is supported by NIH R01 GM094276.

Supplementary material

Video 1

Drosophila ovary dissection. Video showing dissection of Drosophila ovaries using a stereomicroscope. Alternate dissection methods are shown for acquiring stage 6-8 or stage 1-5 egg chambers. After dissection, healthy ovarioles are sorted and older egg chambers are trimmed away. Please see Fig. 2 for stills of this video and a detailed procedural description.


  1. 1.
    Horne-Badovinac S, Bilder D (2005) Mass transit: epithelial morphogenesis in the Drosophila egg chamber. Dev Dyn 232(3):559–574CrossRefPubMedGoogle Scholar
  2. 2.
    Wu X, Tanwar PS, Raftery LA (2008) Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 19(3):271–282CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    He L, Wang X, Montell DJ (2011) Shining light on Drosophila oogenesis: live imaging of egg development. Curr Opin Genet Dev 21(5):612–619CrossRefPubMedGoogle Scholar
  4. 4.
    Dorman JB, James KE, Fraser SE et al (2004) bullwinkle is required for epithelial morphogenesis during Drosophila oogenesis. Dev Biol 267(2):320–341CrossRefPubMedGoogle Scholar
  5. 5.
    Gutzeit H, Koppa R (1982) Time-lapse film analysis of cytoplasmic streaming during late oogenesis of Drosophila. J Embryol Exp Morph 67:101–111Google Scholar
  6. 6.
    Huelsmann S, Ylanne J, Brown NH (2013) Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells. Dev Cell 26(6):604–615CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Osterfield M, Du X, Schupbach T et al (2013) Three-dimensional epithelial morphogenesis in the developing Drosophila egg. Dev Cell 24(4):400–410CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Petri WH, Mindrinos MN, Lombard MF et al (1979) In vitro development of the Drosophila chorion in a chemically defined organ culture medium. Dev Genes Evol 186:351–362Google Scholar
  9. 9.
    Spracklen AJ, Fagan TN, Lovander KE et al (2014) The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis. Dev Biol 393(2):209–226CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Spracklen AJ, Tootle TL (2013) The utility of stage-specific mid-to-late Drosophila follicle isolation. J Vis Exp 82:50493Google Scholar
  11. 11.
    Prasad M, Jang AC, Starz-Gaiano M et al (2007) A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nat Protoc 2(10):2467–2473CrossRefPubMedGoogle Scholar
  12. 12.
    Bianco A, Poukkula M, Cliffe A et al (2007) Two distinct modes of guidance signalling during collective migration of border cells. Nature 448(7151):362–365CrossRefPubMedGoogle Scholar
  13. 13.
    Prasad M, Montell DJ (2007) Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev Cell 12(6):997–1005CrossRefPubMedGoogle Scholar
  14. 14.
    He L, Wang X, Tang HL et al (2010) Tissue elongation requires oscillating contractions of a basal actomyosin network. Nat Cell Biol 12(12):1133–1142CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cetera M, Ramirez-San Juan GR, Oakes PW et al (2014) Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat Commun 5:5511CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Haigo SL, Bilder D (2011) Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331(6020):1071–1074CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Airoldi SJ, McLean PF, Shimada Y et al (2011) Intercellular protein movement in syncytial Drosophila follicle cells. J Cell Sci 124(Pt 23):4077–4086CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lerner DW, McCoy D, Isabella AJ et al (2013) A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis. Dev Cell 24(2):159–168CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bilder D, Haigo SL (2012) Expanding the morphogenetic repertoire: perspectives from the Drosophila egg. Dev Cell 22(1):12–23CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gates J (2012) Drosophila egg chamber elongation: insights into how tissues and organs are shaped. Fly (Austin) 6(4):213–227CrossRefGoogle Scholar
  21. 21.
    Horne-Badovinac S (2014) The Drosophila egg chamber-a new spin on how tissues elongate. Integr Comp Biol 54(4):667–676CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Konopka CA, Bednarek SY (2008) Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53(1):186–196CrossRefPubMedGoogle Scholar
  23. 23.
    Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5(2):159–161CrossRefPubMedGoogle Scholar
  24. 24.
    Hudson AM, Cooley L (2014) Methods for studying oogenesis. Methods 68(1):207–217CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lewellyn L, Cetera M, Horne-Badovinac S (2013) Misshapen decreases integrin levels to promote epithelial motility and planar polarity in Drosophila. J Cell Biol 200(6):721–729CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Viktorinova I, Dahmann C (2013) Microtubule polarity predicts direction of egg chamber rotation in Drosophila. Curr Biol 23(15):1472–1477CrossRefPubMedGoogle Scholar
  27. 27.
    Drummond-Barbosa D, Spradling AC (2001) Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 231(1):265–278CrossRefPubMedGoogle Scholar
  28. 28.
    Mazzalupo S, Cooley L (2006) Illuminating the role of caspases during Drosophila oogenesis. Cell Death Differ 13(11):1950–1959CrossRefPubMedGoogle Scholar
  29. 29.
    Pritchett TL, Tanner EA, McCall K (2009) Cracking open cell death in the Drosophila ovary. Apoptosis 14(8):969–979CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Robin FB, McFadden WM, Yao B et al (2014) Single-molecule analysis of cell surface dynamics in Caenorhabditis elegans embryos. Nat Methods 11(6):677–682CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maureen Cetera
    • 1
    • 2
  • Lindsay Lewellyn
    • 3
  • Sally Horne-Badovinac
    • 1
    • 2
    Email author
  1. 1.Department of Molecular Genetics and Cell BiologyThe University of ChicagoChicagoUSA
  2. 2.Committee on Development, Regeneration and Stem Cell BiologyThe University of ChicagoChicagoUSA
  3. 3.Department of Biological SciencesButler UniversityIndianapolisUSA

Personalised recommendations