Microencapsulation in Clinical Islet Xenotransplantation

Part of the Methods in Molecular Biology book series (MIMB, volume 1479)


Allogeneic islet transplantation has become a viable treatment for patients with unstable type 1 diabetes; however, donor shortage and the necessity for immunosuppressive drugs are the major drawbacks of this approach. Microencapsulated porcine islet xenotransplantation could solve these drawbacks. Clinical porcine islet xenotransplantation as well as microencapsulated islet transplantation has been conducted without significant side effects. However, these transplantations are not as efficacious as allogeneic naked islet transplantation. High quality porcine islets, biocompatible capsules, and appropriate implant sites should be the key factors for improving efficacy. With improved efficacy, microencapsulated islet xenotransplantation will solve the major drawbacks associated with current islet transplantation.

Key words

Porcine islet Encapsulation Alginate APA capsule Xenotransplantation 


  1. 1.
    The Diabetes Control and Complications Trial Research Group (1997) Hypoglycemia in the Diabetes Control and Complications Trial. Diabetes 46:271–286CrossRefGoogle Scholar
  2. 2.
    Matsumoto S (2010) Islet cell transplantation for type 1 diabetes. J Diabetes 2:16–22CrossRefGoogle Scholar
  3. 3.
    Shapiro AMJ (2012) Islet transplantation in type 1 diabetes: ongoing challenges, refined procedures, and long-term outcome. Rev Diabet Stud 9:385–406CrossRefGoogle Scholar
  4. 4.
    Matsumoto S, Okitsu T, Iwanaga Y et al (2006) Successful islet transplantation from nonheartbeating donor pancreata using modified Ricordi islet isolation method. Transplantation 82:460–465CrossRefGoogle Scholar
  5. 5.
    Matsumoto S, Okitsu T, Iwanaga Y et al (2005) Insulin independence after living-donor distal pancreatectomy and islet allotransplantation. Lancet 365:1642–1644CrossRefGoogle Scholar
  6. 6.
    Groth CG, Korsgren O, Tibell A et al (1994) Transplantation of porcine fetal pancreatic to diabetic patients. Lancet 344:1402–1404CrossRefGoogle Scholar
  7. 7.
    Wang W, Mo Z, Ye B et al (2011) A clinical trial of xenotransplantation of neonatal pig islets for diabetic patients. Zhong Nan Da Xue Xue Bao Yi Xue Ban 36:1134–1140Google Scholar
  8. 8.
    Valdes-Gonzalez RA, Dornates LM, Garibay GN et al (2005) Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur J Endocrinol 153:419–427CrossRefGoogle Scholar
  9. 9.
    Valdes-Gonzalez R-VAL, White DJ et al (2010) Long-term follow-up of patients with type 1 diabetes transplanted with neonatal pig islets. Clin Exp Immunol 162:537–542CrossRefGoogle Scholar
  10. 10.
    Elliott RB, Escobar L, Tan PLJ et al (2007) Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 14:157–161CrossRefGoogle Scholar
  11. 11.
    Calafiore R, Basta G (2014) Clinical application of microencapsulated islets: actual prospective on progress and challenges. Adv Drug Deliv Rev 67–68:84–92CrossRefGoogle Scholar
  12. 12.
    Korbutt GS, Elliott JF, Ao Z et al (1996) Large scale isolation, growth and function of porcine neonatal islet cells. J Clin Invest 97:270–280CrossRefGoogle Scholar
  13. 13.
    Hillberg A, Kathirgamanathan K, Lam JBB et al (2013) Improving alginate-poly-L-ornithine-alginate capsule biocompatibility through genipin crosslinking. J Biomed Mater Res B Appl Biomater 101:258–268CrossRefGoogle Scholar
  14. 14.
    Zhu HT, Lu L, Liu XY et al (2015) Treatment of diabetes with encapsulated pig islets: an update on current developments. J Zhejiang Univ Sci B 16:329–343CrossRefGoogle Scholar
  15. 15.
    Matsumoto S, Tan P, Baker J et al (2014) Clinical porcine islet xenotransplantation under comprehensive regulation. Transplant Proc 46:1992–1995CrossRefGoogle Scholar
  16. 16.
    Soon-Shiong P, Heintz RE, Merideth N et al (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950–951CrossRefGoogle Scholar
  17. 17.
    Tuch BE, Keogh GW, Williams LJ et al (2009) Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 32:1887–1889CrossRefGoogle Scholar
  18. 18.
    Basta G, Montanucci P, Luca G et al (2011) Long-term metabolic and immunological follow-up of non-immunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 34:2406–2409CrossRefGoogle Scholar
  19. 19.
    Hering BJ, Cooper DKC, Cozzi E et al (2009) The international xenotransplantation association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes- Executive summary. Xenotransplantation 16:196–202CrossRefGoogle Scholar
  20. 20.
    Noguchi H, Levy MF, Kobayashi N, Matsumoto S (2009) Pancreas preservation by the two-layer method: does it have a beneficial effect compared with simple preservation in University of Wisconsin solution? Cell Transplant 18:497–503Google Scholar
  21. 21.
    Qin H, Matsumoto S, Klintmalm GB et al (2011) A meta-analysis for comparison of the two-layer and university of Wisconsin pancreas preservation methods in islet isolation. Cell Transplant 20:1127–1137CrossRefGoogle Scholar
  22. 22.
    Matsumoto S, Noguchi H, Shimoda M et al (2010) Seven consecutive successful clinical islet isolation with pancreatic ductal injection. Cell Transplant 19:291–297CrossRefGoogle Scholar
  23. 23.
    Ricordi C, Lacy PE, Finke EH et al (1988) Automated method for islet isolation of human pancreatic islets. Diabetes 37:413–420CrossRefGoogle Scholar
  24. 24.
    Ricordi C, Socci C, Davalli AM et al (1990) Isolation of the elusive pig islet. Surgery 107:688–694Google Scholar
  25. 25.
    Krishnan R, Alexander M, Robles L et al (2014) Islet and stem cell encapsulation for clinical transplantation. Rev Diabet Stud 11:84–101CrossRefGoogle Scholar
  26. 26.
    Veiseh O, Doloff JC, Ma M et al (2015) Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 14:643–651CrossRefGoogle Scholar
  27. 27.
    Pepper AR, Gala-Lopez B, Pawlick R et al (2015) A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol 33:518–523CrossRefGoogle Scholar
  28. 28.
    Pareta R, McQuilling JP, Sittadjody S et al (2014) Long-term function of islets encapsulated in a re-designed alginate microcapsule construct in omentum pouch of immune-competent diabetic rats. Pancreas 43:605–613CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.National Institute for Global Health and MedicineTokyoJapan
  2. 2.National Center for Global Health and MedicineTokyoJapan
  3. 3.Otsuka Pharmaceutical Factory Inc.NarutoJapan

Personalised recommendations