Clostridium difficile Genome Editing Using pyrE Alleles

  • Muhammad Ehsaan
  • Sarah A. Kuehne
  • Nigel P. Minton
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1476)

Abstract

Precise manipulation (in-frame deletions and substitutions) of the Clostridium difficile genome is possible through a two-stage process of single-crossover integration and subsequent isolation of double-crossover excision events using replication-defective plasmids that carry a counterselection marker. Use of a codA (cytosine deaminase) or pyrE (orotate phosphoribosyltransferase) as counter selection markers appears equally effective, but there is considerable merit in using a pyrE mutant as the host as, through the use of allele-coupled exchange (ACE) vectors, mutants created (by whatever means) can be rapidly complemented concomitant with restoration of the pyrE allele. This avoids the phenotypic effects frequently observed with high-copy-number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention.

Key words

Clostridium difficile Pseudo-suicide Allelic exchange Allele-coupled exchange (ACE) Counterselection marker pyrE codA Complementation Overexpression 

References

  1. 1.
    Cartman ST, Kelly ML, Heeg D, Heap JT, Minton NP (2012) Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol 78(13):4683–4690. doi:10.1128/AEM.00249-12 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ehsaan M, Kuit W, Zhang Y, Cartman ST, Heap JT, Winzer K, Minton NP (2016) Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels 9:4. doi:10.1186/s13068-015-0410-0 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ng YK, Ehsaan M, Philip S, Collery MM, Janoir C, Collignon A, Cartman ST, Minton NP (2013) Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles. PLoS One 8(2):e56051. doi:10.1371/journal.pone.0056051 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Heap JT, Ehsaan M, Cooksley CM, Ng YK, Cartman ST, Winzer K, Minton NP (2012) Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 40(8):e59. doi:10.1093/nar/gkr1321 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76(19):6591–6599. doi:10.1128/AEM.01484-10 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nariya H, Miyata S, Suzuki M, Tamai E, Okabe A (2011) Development and application of a method for counterselectable in-frame deletion in Clostridium perfringens. Appl Environ Microbiol 77(4):1375–1382. doi:10.1128/AEM.01572-10 CrossRefPubMedGoogle Scholar
  7. 7.
    Dusseaux S, Croux C, Soucaille P, Meynial-Salles I (2013) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab Eng 18:1–8. doi:10.1016/j.ymben.2013.03.003 CrossRefPubMedGoogle Scholar
  8. 8.
    Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77(23):8288–8294. doi:10.1128/AEM.00646-11 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Al-Hinai MA, Fast AG, Papoutsakis ET (2012) Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration. Appl Environ Microbiol 78(22):8112–8121. doi:10.1128/AEM.02214-12 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang Y, Grosse-Honebrink A, Minton NP (2015) A universal mariner transposon system for forward genetic studies in the genus Clostridium. PLoS One 10(4):e0122411. doi:10.1371/journal.pone.0122411 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kovacs K, Willson BJ, Schwarz K, Heap JT, Jackson A, Bolam DN, Winzer K, Minton NP (2013) Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels 6(1):117. doi:10.1186/1754-6834-6-117 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Heap JT, Theys J, Ehsaan M, Kubiak AM, Dubois L, Paesmans K, Mellaert LV, Knox R, Kuehne SA, Lambin P, Minton NP (2014) Spores of Clostridium engineered for clinical efficacy and safety cause regression and cure of tumors in vivo. Oncotarget 5(7):1761–1769. doi:10.18632/oncotarget.1761 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shubeita HE, Sambrook JF, McCormick AM (1987) Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein. Proc Natl Acad Sci U S A 84(16):5645–5649CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Smith CJ, Markowitz SM, Macrina FL (1981) Transferable tetracycline resistance in Clostridium difficile. Antimicrob Agents Chemother 19(6):997–1003CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cartman ST, Minton NP (2010) A mariner-based transposon system for in vivo random mutagenesis of Clostridium difficile. Appl Environ Microbiol 76(4):1103–1109. doi:10.1128/AEM.02525-09 CrossRefPubMedGoogle Scholar
  16. 16.
    Heap JT, Pennington OJ, Cartman ST, Minton NP (2009) A modular system for Clostridium shuttle plasmids. J Microbiol Methods 78(1):79–85. doi:10.1016/j.mimet.2009.05.004 CrossRefPubMedGoogle Scholar
  17. 17.
    Chambers SP, Prior SE, Barstow DA, Minton NP (1988) The pMTL nic - cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68(1):139–149. doi:10.1016/0378-1119(88)90606-3 CrossRefPubMedGoogle Scholar
  18. 18.
    Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. doi:10.1038/nmeth.1318 CrossRefPubMedGoogle Scholar
  19. 19.
    Lund AM, Kildegaard HF, Petersen MB, Rank J, Hansen BG, Andersen MR, Mortensen UH (2014) A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering. PLoS One 9(5):e96693. doi:10.1371/journal.pone.0096693 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    de Kok S, Stanton LH, Slaby T, Durot M, Holmes VF, Patel KG, Platt D, Shapland EB, Serber Z, Dean J, Newman JD, Chandran SS (2014) Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth Biol 3(2):97–106. doi:10.1021/sb4001992 CrossRefPubMedGoogle Scholar
  21. 21.
    Engler C, Marillonnet S (2011) Generation of families of construct variants using golden gate shuffling. Methods Mol Biol 729:167–181. doi:10.1007/978-1-61779-065-2_11 CrossRefPubMedGoogle Scholar
  22. 22.
    Warrens AN, Jones MD, Lechler RI (1997) Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. Gene 186(1):29–35. doi:10.1016/S0378-1119(96)00674-9 CrossRefPubMedGoogle Scholar
  23. 23.
    Purdy D, O’Keeffe TAT, Elmore M, Herbert M, McLeod A, Bokori-Brown M, Ostrowski A, Minton NP (2002) Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol Microbiol 46(2):439–452. doi:10.1046/j.1365-2958.2002.03134.x CrossRefPubMedGoogle Scholar
  24. 24.
    Minton NP, Ehsaan M, Humphreys CM, Little GT, Baker J, Henstra AM, Liew F, Kelly ML, Sheng L, Schwarz K, Zhang Y (2016) A roadmap for gene system development in Clostridium. Anaerobe. 2016 May 24. pii: S1075-9964(16)30064-6. doi:10.1016/j.anaerobe.2016.05.011

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Muhammad Ehsaan
    • 1
  • Sarah A. Kuehne
    • 1
    • 2
  • Nigel P. Minton
    • 1
    • 2
  1. 1.Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Centre for Biomolecular SciencesUniversity of NottinghamNottinghamUK
  2. 2.Nottingham Digestive Disease Centre, NIHR Biomedical Research UnitThe University of NottinghamNottinghamUK

Personalised recommendations