Advertisement

Determination of Histone H2AX Phosphorylation in DT40 Cells

  • Kana Nishihara
  • Sampada A. Shahane
  • Menghang XiaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1473)

Abstract

Visualization of DNA damage response protein recruitment to DNA damage sites enables measurement of the DNA damage. DNA double-strand breaks (DSBs) and blocked replication forks induce the phosphorylation of H2AX at serine 139 (γH2AX), and accumulate γH2AX which can then be detected as foci. The detection of γH2AX foci by immunostaining with antibodies that recognize γH2AX is an indicator of DSBs presence. This chapter describes the measurement of γH2AX immunostaining using a high-content imaging platform in chicken DT40 B-lymphocyte cell lines.

Key words

γH2AX High-contents imaging DSB Immunostaining 

References

  1. 1.
    Geric M, Gajski G, Garaj-Vrhovac V (2014) gamma-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology. Ecotoxicol Environ Saf 105:13–21. doi: 10.1016/j.ecoenv.2014.03.035 CrossRefPubMedGoogle Scholar
  2. 2.
    Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868CrossRefPubMedGoogle Scholar
  3. 3.
    Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y (2008) GammaH2AX and cancer. Nat Rev Cancer 8(12):957–967. doi: 10.1038/nrc2523 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sedelnikova OA, Rogakou EP, Panyutin IG, Bonner WM (2002) Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiat Res 158(4):486–492CrossRefPubMedGoogle Scholar
  5. 5.
    Buerstedde JM, Takeda S (1991) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67(1):179–188CrossRefPubMedGoogle Scholar
  6. 6.
    Yamazoe M, Sonoda E, Hochegger H, Takeda S (2004) Reverse genetic studies of the DNA damage response in the chicken B lymphocyte line DT40. DNA Repair (Amst) 3(8-9):1175–1185. doi: 10.1016/j.dnarep.2004.03.039 CrossRefGoogle Scholar
  7. 7.
    Evans TJ, Yamamoto KN, Hirota K, Takeda S (2010) Mutant cells defective in DNA repair pathways provide a sensitive high-throughput assay for genotoxicity. DNA Repair (Amst) 9(12):1292–1298. doi: 10.1016/j.dnarep.2010.09.017 CrossRefGoogle Scholar
  8. 8.
    Nishihara K, Huang R, Zhao J, Shahane SA, Witt KL, Smith-Roe SL, Tice RR, Takeda S, Xia M (2015) Identification of genotoxic compounds using isogenic DNA repair deficient DT40 cell lines on a quantitative high throughput screening platform. Mutagenesis 31:69–81. doi: 10.1093/mutage/gev055 [pii]

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kana Nishihara
    • 1
  • Sampada A. Shahane
    • 1
  • Menghang Xia
    • 1
    Email author
  1. 1.National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaUSA

Personalised recommendations