Advertisement

A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling

  • Ruili HuangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1473)

Abstract

The US Tox21 program has developed in vitro assays to test large collections of environmental chemicals in a quantitative high-throughput screening (qHTS) format, using triplicate 15-dose titrations to generate over 50 million data points to date. Counter screens are also employed to minimize interferences from non-target-specific assay artifacts, such as compound auto fluorescence and cytotoxicity. New data analysis approaches are needed to integrate these data and characterize the activities observed from these assays. Here, we describe a complete analysis pipeline that evaluates these qHTS data for technical quality in terms of signal reproducibility. We integrate signals from repeated assay runs, primary readouts, and counter screens to produce a final call on on-target compound activity.

Key words

HTS Concentration response In vitro assay Activity profile Tox21 

References

  1. 1.
    Collins FS, Gray GM, Bucher JR (2008) Toxicology. Transforming environmental health protection. Science 319(5865):906–907. doi: 10.1126/science.1154619, 319/5865/906 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kavlock RJ, Austin CP, Tice RR (2009) Toxicity testing in the 21st century: implications for human health risk assessment. Risk Anal 29(4):485–487. doi: 10.1111/j.1539-6924.2008.01168.x, discussion 492–487RISK1168 [pii]CrossRefPubMedGoogle Scholar
  3. 3.
    NRC (2007) Toxicity testing in the 21st century: a vision and a strategy. The National Academies Press, Washington, DCGoogle Scholar
  4. 4.
    Tice RR, Austin CP, Kavlock RJ, Bucher JR (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Perspect 121(7):756–765. doi: 10.1289/ehp.1205784 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Attene-Ramos MS, Huang R, Sakamuru S, Witt KL, Beeson GC, Shou L, Schnellmann RG, Beeson CC, Tice RR, Austin CP, Xia M (2013) Systematic study of mitochondrial toxicity of environmental chemicals using quantitative high throughput screening. Chem Res Toxicol 26(9):1323–1332. doi: 10.1021/tx4001754 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Huang R, Xia M, Cho MH, Sakamuru S, Shinn P, Houck KA, Dix DJ, Judson RS, Witt KL, Kavlock RJ, Tice RR, Austin CP (2011) Chemical genomics profiling of environmental chemical modulation of human nuclear receptors. Environ Health Perspect 119(8):1142–1148. doi: 10.1289/ehp.1002952 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shukla SJ, Huang R, Austin CP, Xia M (2010) The future of toxicity testing: a focus on in vitro methods using a quantitative high throughput screening platform. Drug Discov Today 15(23-24):997–1007CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Attene-Ramos MS, Miller N, Huang R, Michael S, Itkin M, Kavlock RJ, Austin CP, Shinn P, Simeonov A, Tice RR, Xia M (2013) The Tox21 robotic platform for the assessment of environmental chemicals – from vision to reality. Drug Discov Today 18(15-16):716–723. doi: 10.1016/j.drudis.2013.05.015, S1359-6446(13)00161-X [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice RR, Simeonov A, Austin CP, Xia M (2015) Profiling of the Tox21 chemical collection for mitochondrial function to identify compounds that acutely decrease mitochondrial membrane potential. Environ Health Perspect 123(1):49–56. doi: 10.1289/ehp.1408642 PubMedGoogle Scholar
  10. 10.
    Hsu CW, Zhao J, Huang R, Hsieh JH, Hamm J, Chang X, Houck K, Xia M (2014) Quantitative high-throughput profiling of environmental chemicals and drugs that modulate farnesoid X receptor. Sci Rep. doi: 10.1038/srep06437 Google Scholar
  11. 11.
    Huang R, Sakamuru S, Martin MT, Reif DM, Judson RS, Houck KA, Casey W, Hsieh JH, Shockley KR, Ceger P, Fostel J, Witt KL, Tong W, Rotroff DM, Zhao T, Shinn P, Simeonov A, Dix DJ, Austin CP, Kavlock RJ, Tice RR, Xia M (2014) Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci Rep. doi: 10.1038/srep05664, srep05664 [pii]Google Scholar
  12. 12.
    Simeonov A, Jadhav A, Thomas CJ, Wang Y, Huang R, Southall NT, Shinn P, Smith J, Austin CP, Auld DS, Inglese J (2008) Fluorescence spectroscopic profiling of compound libraries. J Med Chem 51(8):2363–2371. doi: 10.1021/jm701301m CrossRefPubMedGoogle Scholar
  13. 13.
    Thorne N, Auld DS, Inglese J (2010) Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr Opin Chem Biol 14(3):315–324. doi: 10.1016/j.cbpa.2010.03.020, S1367-5931(10)00046-3 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73CrossRefPubMedGoogle Scholar
  15. 15.
    Southall NT, Jadhav A, Huang R, Nguyen T, Wang Y (2009) Enabling the large scale analysis of quantitative high throughput screening data. In: Seethala R, Zhang L (eds) Handbook of drug screening, 2nd edn. Taylor and Francis, New York, pp 442–463Google Scholar
  16. 16.
    Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol Lond 40:4–7Google Scholar
  17. 17.
    Wang Y, Jadhav A, Southal N, Huang R, Nguyen DT (2011) A grid algorithm for high throughput fitting of dose-response curve data. Curr Chem Genomics 4:57–66. doi: 10.2174/1875397301004010057 CrossRefGoogle Scholar
  18. 18.
    Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A, Zheng W, Austin CP (2006) Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci U S A 103(31):11473–11478. doi: 10.1073/pnas.0604348103, 0604348103 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    PubChem (2013) Tox21 phase II data. http://www.ncbi.nlm.nih.gov/pcassay?term=tox21. Accessed 16 Nov 2013
  20. 20.
    Martin MT, Knudsen TB, Reif DM, Houck KA, Judson RS, Kavlock RJ, Dix DJ (2011) Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Biol Reprod 85(2):327–339. doi: 10.1095/biolreprod.111.090977, biolreprod.111.090977 [pii]CrossRefPubMedGoogle Scholar
  21. 21.
    Sipes NS, Martin MT, Reif DM, Kleinstreuer NC, Judson RS, Singh AV, Chandler KJ, Dix DJ, Kavlock RJ, Knudsen TB (2011) Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data. Toxicol Sci 124(1):109–127. doi: 10.1093/toxsci/kfr220, kfr220 [pii]CrossRefPubMedGoogle Scholar
  22. 22.
    Judson RS, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Mortensen HM, Reif DM, Rotroff DM, Shah I, Richard AM, Dix DJ (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect 118(4):485–492. doi: 10.1289/ehp.0901392 CrossRefPubMedGoogle Scholar
  23. 23.
    Huang R, Southall N, Xia M, Cho MH, Jadhav A, Nguyen DT, Inglese J, Tice RR, Austin CP (2009) Weighted feature significance: a simple, interpretable model of compound toxicity based on the statistical enrichment of structural features. Toxicol Sci 112(2):385–393. doi: 10.1093/toxsci/kfp231, kfp231 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sun H, Xia M, Austin CP, Huang R (2012) Paradigm shift in toxicity testing and modeling. AAPS J 14(3):473–480. doi: 10.1208/s12248-012-9358-1 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Huang R, Xia M, Nguyen D-T, Zhao T, Sakamuru S, Zhao J, Shahane SA, Rossoshek A, Simeonov A (2016) Tox21 challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental chemicals and drugs. Front Environ Sci 3:85. doi: 10.3389/fenvs.2015.00085

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.National Center for Advancing Translational SciencesNational Institutes of HealthBethesdaUSA

Personalised recommendations