Synthetic DNA pp 111-128

Part of the Methods in Molecular Biology book series (MIMB, volume 1472) | Cite as

PaperClip: A Simple Method for Flexible Multi-Part DNA Assembly

Protocol

Abstract

Joining DNA sequences to create linear and circular constructs is a basic requirement in molecular biology. Here we describe PaperClip, a recently developed method, which enables assembly of multiple DNA sequences in one reaction in a combinatorial manner. In contrast to other homology-based multi-part assembly methods currently available, PaperClip allows assembly of a given set of parts in any order without requiring specific single-use oligonucleotides for each assembly order.

Key words

Molecular cloning DNA assembly Single-pot assembly Oligonucleotide annealing Ligation PAGE PCR Agarose gel electrophoresis CPEC SLiCE Cell extract Selection 

References

  1. 1.
    Arber W, Linn S (1969) DNA modification and restriction. Annu Rev Biochem 38:467–500. doi:10.1146/annurev.bi.38.070169.002343 CrossRefPubMedGoogle Scholar
  2. 2.
    Meselson M, Yuan R (1968) DNA restriction enzyme from E. coli. Nature 217(5134):1110–1114CrossRefPubMedGoogle Scholar
  3. 3.
    Weiss B, Richardson CC (1967) Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc Natl Acad Sci U S A 57(4):1021–1028CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11), e3647. doi:10.1371/journal.pone.0003647 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6(2), e16765. doi:10.1371/journal.pone.0016765 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shetty R, Lizarazo M, Rettberg R, Knight TF (2011) Assembly of BioBrick standard biological parts using three antibiotic assembly. Methods Enzymol 498:311–326. doi:10.1016/B978-0-12-385120-8.00013-9 CrossRefPubMedGoogle Scholar
  7. 7.
    Casini A, MacDonald JT, De Jonghe J, Christodoulou G, Freemont PS, Baldwin GS, Ellis T (2014) One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy. Nucleic Acids Res 42(1), e7. doi:10.1093/nar/gkt915 CrossRefPubMedGoogle Scholar
  8. 8.
    Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. doi:10.1038/nmeth.1318 CrossRefPubMedGoogle Scholar
  9. 9.
    Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4(7), e6441. doi:10.1371/journal.pone.0006441 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang Y, Werling U, Edelmann W (2012) SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40(8), e55. doi:10.1093/nar/gkr1288 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Trubitsyna M, Michlewski G, Cai Y, Elfick A, French CE (2014) PaperClip: rapid multi-part DNA assembly from existing libraries. Nucleic Acids Res. doi:10.1093/nar/gku829 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Michlewski G, Caceres JF (2010) RNase-assisted RNA chromatography. RNA 16(8):1673–1678. doi:10.1261/rna.2136010 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of EdinburghEdinburghUK
  2. 2.School of EngineeringUniversity of EdinburghEdinburghUK

Personalised recommendations