SpeedyGenes: Exploiting an Improved Gene Synthesis Method for the Efficient Production of Synthetic Protein Libraries for Directed Evolution

  • Andrew Currin
  • Neil Swainston
  • Philip J. Day
  • Douglas B. Kell
Part of the Methods in Molecular Biology book series (MIMB, volume 1472)


Gene synthesis is a fundamental technology underpinning much research in the life sciences. In particular, synthetic biology and biotechnology utilize gene synthesis to assemble any desired DNA sequence, which can then be incorporated into novel parts and pathways. Here, we describe SpeedyGenes, a gene synthesis method that can assemble DNA sequences with greater fidelity (fewer errors) than existing methods, but that can also be used to encode extensive, statistically designed sequence variation at any position in the sequence to create diverse (but accurate) variant libraries. We summarize the integrated use of GeneGenie to design DNA and oligonucleotide sequences, followed by the procedure for assembling these accurately and efficiently using SpeedyGenes.

Key words

Directed evolution Error correction Gene synthesis Protein libraries Synthetic biology 



We thank the Biotechnology and Biological Sciences Research Council for financial support (grant BB/M017702/1); Prof Nick Turner, Dr. Ian Rowles, and Dr. Timothy Eyes for useful discussions; and Mrs. Hannah Currin for preparation of figures. This is a contribution from the Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM).


  1. 1.
    Currin A, Swainston N, Day PJ, Kell DB (2014) SpeedyGenes: an improved gene synthesis method for the efficient production of error-corrected, synthetic protein libraries for directed evolution. Protein Eng Des Sel 27:273–280. doi: 10.1093/protein/gzu029
  2. 2.
    Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, Milo R (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50(21):4402–4410CrossRefPubMedGoogle Scholar
  3. 3.
    Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97:639–666PubMedPubMedCentralGoogle Scholar
  4. 4.
    Currin A, Swainston N, Day PJ, Kell DB (2015) Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 44(5):1172–1239. doi: 10.1039/c1034cs00351a CrossRefPubMedGoogle Scholar
  5. 5.
    Kell DB, Westerhoff HV (1986) Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiol Rev 39:305–320CrossRefGoogle Scholar
  6. 6.
    Mendes P, Kell DB (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14:869–883CrossRefPubMedGoogle Scholar
  7. 7.
    Arnold FH, Volkov AA (1999) Directed evolution of biocatalysts. Curr Opin Chem Biol 3(1):54–59CrossRefPubMedGoogle Scholar
  8. 8.
    Voigt CA, Kauffman S, Wang ZG (2001) Rational evolutionary design: the theory of in vitro protein evolution. Adv Protein Chem 55:79–160CrossRefGoogle Scholar
  9. 9.
    Turner NJ (2009) Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5(8):567–573CrossRefPubMedGoogle Scholar
  10. 10.
    Kell DB, Lurie-Luke E (2015) The virtue of innovation: innovation through the lenses of biological evolution. J R Soc Interface 12(2):20141183. doi: 10.1098/rsif.2014.1183 PubMedPubMedCentralGoogle Scholar
  11. 11.
    McCullum EO, Williams BA, Zhang J, Chaput JC (2010) Random mutagenesis by error-prone PCR. Methods Mol Biol 634:103–109. doi: 10.1007/978-1-60761-652-8_7 CrossRefPubMedGoogle Scholar
  12. 12.
    Stemmer WPC (1994) Rapid evolution of a protein in vivo by DNA shuffling. Nature 370:389–391CrossRefPubMedGoogle Scholar
  13. 13.
    Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. Chembiochem 9(11):1797–1804CrossRefPubMedGoogle Scholar
  14. 14.
    Kell DB (2012) Scientific discovery as a combinatorial optimisation problem: how best to navigate the landscape of possible experiments? Bioessays 34(3):236–244CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pritchard L, Corne DW, Kell DB, Rowland JJ, Winson MK (2004) A general model of error-prone PCR. J Theor Biol 234(4):497–509CrossRefGoogle Scholar
  16. 16.
    Zhao J, Kardashliev T, Joelle Ruff A, Bocola M, Schwaneberg U (2014) Lessons from diversity of directed evolution experiments by an analysis of 3,000 mutations. Biotechnol Bioeng 111:2380–2389. doi: 10.1002/bit.25302 CrossRefPubMedGoogle Scholar
  17. 17.
    Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA III, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867):1215–1220CrossRefPubMedGoogle Scholar
  18. 18.
    Swainston N, Currin A, Day PJ, Kell DB (2014) GeneGenie: optimised oligomer design for directed evolution. Nucleic Acids Res 12:W395–W400. doi: 10.1093/nar/gku336 CrossRefGoogle Scholar
  19. 19.
    Knight CG, Platt M, Rowe W, Wedge DC, Khan F, Day P, McShea A, Knowles J, Kell DB (2009) Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape. Nucleic Acids Res 37(1):e6CrossRefPubMedGoogle Scholar
  20. 20.
    Oates MJ, Corne DW, Kell DB (2003) The bimodal feature at large population sizes and high selection pressure: implications for directed evolution. In: Tan KC, Lim MH, Yao X, Wang L (eds) Recent advances in simulated evolution and learning. World Scientific, Singapore, pp 215–240Google Scholar
  21. 21.
    Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching C, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW (2007) Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotechnol 25(3):338–344CrossRefPubMedGoogle Scholar
  22. 22.
    Nomenclature Committee of the International Union of Biochemistry (NC-IUB) (1985) Nomenclature for incompletely specified bases in nucleic acid sequences. Recommendations 1984. Eur J Biochem 150:1–5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Andrew Currin
    • 1
    • 2
    • 3
  • Neil Swainston
    • 1
    • 3
    • 4
  • Philip J. Day
    • 1
    • 3
    • 5
  • Douglas B. Kell
    • 1
    • 2
    • 3
  1. 1.Manchester Institute of BiotechnologyThe University of ManchesterManchesterUK
  2. 2.School of ChemistryThe University of ManchesterManchesterUK
  3. 3.Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM)The University of ManchesterManchesterUK
  4. 4.School of Computer ScienceThe University of ManchesterManchesterUK
  5. 5.Faculty of Medical and Human SciencesThe University of ManchesterManchesterUK

Personalised recommendations