High-Throughput, Liquid-Based Genome-Wide RNAi Screening in C. elegans

  • Linda P. O’Reilly
  • Ryan R. Knoerdel
  • Gary A. Silverman
  • Stephen C. PakEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1470)


RNA interference (RNAi) is a process in which double-stranded RNA (dsRNA) molecules mediate the inhibition of gene expression. RNAi in C. elegans can be achieved by simply feeding animals with bacteria expressing dsRNA against the gene of interest. This “feeding” method has made it possible to conduct genome-wide RNAi experiments for the systematic knockdown and subsequent investigation of almost every single gene in the genome. Historically, these genome-scale RNAi screens have been labor and time intensive. However, recent advances in automated, high-throughput methodologies have allowed the development of more rapid and efficient screening protocols. In this report, we describe a fast and efficient, liquid-based method for genome-wide RNAi screening.

Key words

RNAi Genome wide High-throughput screening C. elegans Arrayscan 



This work was supported by a grant from the National Institutes of Health (DK096990) to GAS.


  1. 1.
    Fraser AG, Kamath RS, Zipperlen P et al (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408(6810):325–330. doi: 10.1038/35042517 CrossRefPubMedGoogle Scholar
  2. 2.
    Kamath RS, Fraser AG, Dong Y et al (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920):231–237. doi: 10.1038/nature01278 CrossRefPubMedGoogle Scholar
  3. 3.
    Rual JF, Ceron J, Koreth J et al (2004) Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14(10B):2162–2168. doi: 10.1101/gr.2505604 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hamilton B, Dong Y, Shindo M et al (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19(13):1544–1555. doi: 10.1101/gad.1308205 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lehner B, Tischler J, Fraser AG (2006) RNAi screens in Caenorhabditis elegans in a 96-well liquid format and their application to the systematic identification of genetic interactions. Nat Protoc 1(3):1617–1620. doi: 10.1038/nprot.2006.245 CrossRefPubMedGoogle Scholar
  6. 6.
    Lejeune FX, Mesrob L, Parmentier F et al (2012) Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons. BMC Genomics 13:91. doi: 10.1186/1471-2164-13-91 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    O’Rourke EJ, Conery AL, Moy TI (2009) Whole-animal high-throughput screens: the C. elegans model. Methods Mol Biol 486:57–75. doi: 10.1007/978-1-60327-545-3_5 CrossRefPubMedGoogle Scholar
  8. 8.
    Swierczek NA, Giles AC, Rankin CH et al (2011) High-throughput behavioral analysis in C. elegans. Nat Methods 8(7):592–598. doi: 10.1038/nmeth.1625 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Buckingham SD, Sattelle DB (2009) Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC Neurosci 10:84. doi: 10.1186/1471-2202-10-84 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    O’Reilly LP, Luke CJ, Perlmutter DH et al (2014) C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev 69–70:247–253. doi: 10.1016/j.addr.2013.12.001 CrossRefPubMedGoogle Scholar
  11. 11.
    Gosai SJ, Kwak JH, Luke CJ et al (2010) Automated high-content live animal drug screening using C. elegans expressing the aggregation prone serpin α1-antitrypsin Z. PLoS One 5(11):e15460. doi: 10.1371/journal.pone.0015460 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Long OS, Gosai SJ, Kwak JH et al (2011) Using Caenorhabditis elegans to study serpinopathies. Methods Enzymol 499:259–281. doi: 10.1016/B978-0-12-386471-0.00013-4 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    O’Reilly LP, Long OS, Cobanoglu MC et al (2014) A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of alpha1-antitrypsin deficiency. Hum Mol Genet 23(19):5123–5132. doi: 10.1093/hmg/ddu236 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Benson JA, Cummings EE, O’Reilly LP et al (2014) A high-content assay for identifying small molecules that reprogram C. elegans germ cell fate. Methods 68(3):529–535. doi: 10.1016/j.ymeth.2014.05.011 CrossRefPubMedGoogle Scholar
  15. 15.
    Leung CK, Deonarine A, Strange K et al. High-throughput screening and biosensing with fluorescent C. elegans strains. J Vis Exp. 2011;(51). doi: 10.3791/2745
  16. 16.
    Hamamichi S, Rivas RN, Knight AL et al (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci U S A 105(2):728–733. doi: 10.1073/pnas.0711018105 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Morley JF, Brignull HR, Weyers JJ et al (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99(16):10417–10422. doi: 10.1073/pnas.152161099 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedPubMedCentralGoogle Scholar
  19. 19.
    Birmingham A, Selfors LM, Forster T et al (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6(8):569–575, doi:nmeth.1351 [pii]  10.1038/nmeth.1351 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shaye DD, Greenwald I (2011) OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 6(5):e20085. doi: 10.1371/journal.pone.0020085 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi: 10.1038/nprot.2008.211 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Linda P. O’Reilly
    • 1
    • 2
  • Ryan R. Knoerdel
    • 1
    • 2
  • Gary A. Silverman
    • 1
    • 2
    • 3
  • Stephen C. Pak
    • 1
    • 2
    • 3
    Email author
  1. 1.Departments of PediatricsUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Division of Newborn MedicineChildren’s Hospital of Pittsburgh of UPMCPittsburghUSA
  3. 3.Departments of PediatricsWashington University School of MedicineSt LouisUSA

Personalised recommendations