Advertisement

Statistical Analysis of fMRI Data

  • Mark W. Woolrich
  • Christian F. Beckmann
  • Thomas E. Nichols
  • Stephen M. Smith
Protocol
Part of the Neuromethods book series (NM, volume 119)

Abstract

fMRI is a powerful tool used in the study of brain function. It can noninvasively detect signal changes in areas of the brain where neuronal activity is varying. This chapter is a comprehensive description of the various steps in the statistical analysis of fMRI data. This will cover topics such as the general linear model (including orthogonality, hemodynamic variability, noise modeling, and the use of contrasts), multisubject statistics, and statistical thresholding (including random field theory and permutation methods).

Key words

fMRI Analysis Statistics General linear model Multisubject statistics Statistical thresholding 

References

  1. 1.
    Friston K, Worsley K, Frackowiak R, Mazziotta J, Evans A (1994) Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:214–220Google Scholar
  2. 2.
    Hykin J, Bowtell R, Glover P, Coxon R, Blumhardt L, Mansfield P (1995) Investigation of the linearity of functional activation signal changes in the brain using echo planar imaging (EPI) at 3.0 T. In: Proc of the SMR and ESMRB Joint Meeting. p 795Google Scholar
  3. 3.
    Cohen M (1997) Parametric analysis of fMRI data using linear systems methods. NeuroImage 6:93–103CrossRefPubMedGoogle Scholar
  4. 4.
    Dale A, Buckner R (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:329–340CrossRefPubMedGoogle Scholar
  5. 5.
    Burock MA, Buckner RL, Woldorff MG, Rosen BR, Dale AM (1998) Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. NeuroReport 9:3735–3739CrossRefPubMedGoogle Scholar
  6. 6.
    Bullmore E, Brammer M, Williams S et al (1996) Statistical methods of estimation and inference for functional MR image analysis. Magn Reson Med 35:261–277CrossRefPubMedGoogle Scholar
  7. 7.
    Friston K, Josephs O, Zarahn E, Holmes A, Rouquette S, Poline J-B (2000) To smooth or not to smooth? NeuroImage 12:196–208CrossRefPubMedGoogle Scholar
  8. 8.
    Woolrich M, Ripley B, Brady J, Smith S (2001) Temporal autocorrelation in univariate linear modelling of FMRI data. NeuroImage 14:1370–1386CrossRefPubMedGoogle Scholar
  9. 9.
    Locascio J, Jennings P, Moore C, Corkin S (1997) Time series analysis in the time domain and resampling methods for studies of functional magnetic resonance brain imaging. Hum Brain Mapp 5:168–193CrossRefPubMedGoogle Scholar
  10. 10.
    Purdon P, Weisskoff R (1998) Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Hum Brain Mapp 6:239–249CrossRefPubMedGoogle Scholar
  11. 11.
    Marchini J, Ripley B (2000) A new statistical approach to detecting significant activation in functional MRI. NeuroImage 12:366–380CrossRefPubMedGoogle Scholar
  12. 12.
    Worsley K, Liao C, Aston J et al (2002) A general statistical analysis for fMRI data. NeuroImage 15:1–15CrossRefPubMedGoogle Scholar
  13. 13.
    Gautama T, Van Hulle MM (2004) Optimal spatial regularisation of autocorrelation estimates in fMRI analysis. Neuroimage 23:1203–1216CrossRefPubMedGoogle Scholar
  14. 14.
    Penny W, Kiebel S, Friston K (2003) Variational Bayesian inference for fMRI time series. NeuroImage 19:1477–1491CrossRefPubMedGoogle Scholar
  15. 15.
    Woolrich M, Behrens T, Smith S (2004) Constrained linear basis sets for HRF modelling using Variational Bayes. NeuroImage 21:1748–1761CrossRefPubMedGoogle Scholar
  16. 16.
    Smith S, Jenkinson M, Beckmann C, Miller K, Woolrich M (2007) Meaningful design and contrast estimability in fMRI. NeuroImage 34:127–136CrossRefPubMedGoogle Scholar
  17. 17.
    Dale A, Greve D, Burock M (1999) Optimal stimulus sequences for event-related fMRI. NeuroImage 9:S33CrossRefGoogle Scholar
  18. 18.
    Wager T, Nichols T (2003) Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage 18:293–309CrossRefPubMedGoogle Scholar
  19. 19.
    Josephs O, Turner R, Friston K (1997) Event-related fMRI. Hum Brain Mapp 5:1–7CrossRefGoogle Scholar
  20. 20.
    Lange N, Zeger S (1997) Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging. Appl Stat 46:1–29Google Scholar
  21. 21.
    Genovese C (2000) A Bayesian time-course model for functional magnetic resonance imaging data (with discussion). J Am Stat Assoc 95:691–703CrossRefGoogle Scholar
  22. 22.
    Friston KJ (2002) Bayesian estimation of dynamical systems: an application to fMRI. NeuroImage 16:513–530CrossRefPubMedGoogle Scholar
  23. 23.
    Marrelec G, Benali H, Ciuciu P, Pélégrini-Issac M, Poline J-B (2003) Robust Bayesian estimation of the hemodynamic response function in event-related BOLD MRI using basic physiological information. Hum Brain Mapp 19:1–17CrossRefPubMedGoogle Scholar
  24. 24.
    Woolrich M, Jenkinson M, Brady J, Smith S (2004) Fully Bayesian spatio-temporal modelling of FMRI data. IEEE Trans Med Imaging 23:213–231CrossRefPubMedGoogle Scholar
  25. 25.
    Buxton R, Uludag K, Dubowitz D, Liu T (2004) Modeling the hemodynamic response to brain activation. NeuroImage 23(S1):220–233CrossRefGoogle Scholar
  26. 26.
    Boynton G, Engel S, Glover G, Heeger D (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221PubMedGoogle Scholar
  27. 27.
    Glover G (1999) Deconvolution of impulse response in event-related BOLD fMRI. NeuroImage 9:416–429CrossRefPubMedGoogle Scholar
  28. 28.
    Friston K, Josephs O, Rees G, Turner R (1998) Nonlinear event-related responses in fMRI. Magn Reson Med 39:41–52CrossRefPubMedGoogle Scholar
  29. 29.
    Beckmann C, Smith S (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152CrossRefPubMedGoogle Scholar
  30. 30.
    Glover G, Li T, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: Retroicor. Magn Reson Med 44:162–167CrossRefPubMedGoogle Scholar
  31. 31.
    Holmes A, Friston K (1998) Generalisability, random effects & population inference. Fourth Int Conf on Functional Mapping of the Human Brain. NeuroImage 7:S754Google Scholar
  32. 32.
    Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New YorkGoogle Scholar
  33. 33.
    Collins D, Neelin P, Peters T, Evans A (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomo 18:192–205CrossRefGoogle Scholar
  34. 34.
    Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J (2002) Classical and Bayesian inference in neuroimaging: theory. NeuroImage 16:465–483CrossRefPubMedGoogle Scholar
  35. 35.
    Beckmann C, Jenkinson M, Smith S (2003) General multi-level linear modelling for group analysis in FMRI. NeuroImage 20:1052–1063CrossRefPubMedGoogle Scholar
  36. 36.
    Woolrich M, Behrens T, Beckmann C, Jenkinson M, Smith S (2004) Multi-level linear modelling for FMRI group analysis using Bayesian inference. NeuroImage 21:1732–1747CrossRefPubMedGoogle Scholar
  37. 37.
    Kherif F, Poline J-B, Meriaux S, Benali H, Flandin G, Brett M (2003) Group analysis in functional neuroimaging: selecting subjects using similarity measures. Neuroimage 20:2197–2208CrossRefPubMedGoogle Scholar
  38. 38.
    Luo W-L, Nichols TE (2003) Diagnosis and exploration of massively univariate neuroimaging models. Neuroimage 19:1014–1032CrossRefPubMedGoogle Scholar
  39. 39.
    Seghier M, Friston K, Price C (2007) Detecting subject-specific activations using fuzzy clustering. Neuroimage 36:594–605CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wager T, Keller M, Lacey S, Jonides J (2005) Increased sensitivity in neuroimaging analyses using robust regression. NeuroImage 26:99–113CrossRefPubMedGoogle Scholar
  41. 41.
    Woolrich M (2008) Robust group analysis using outlier inference. NeuroImage 41:286–301CrossRefPubMedGoogle Scholar
  42. 42.
    Meriaux S, Roche A, Dehaene-Lambertz G, Thirion B, Poline J (2006) Combined permutation test and mixed-effect model for group average analysis in fMRI. Hum Brain Mapp 27:402–410CrossRefPubMedGoogle Scholar
  43. 43.
    Roche A, Meriaux S, Keller M, Thirion B (2007) Mixed-effect statistics for group analysis in fMRI: a nonpara-metric maximum likelihood approach. Neuroimage 38:501–510CrossRefPubMedGoogle Scholar
  44. 44.
    Thirion B, Pinel P, Mriaux S, Roche A, Dehaene S, Poline J (2007) Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 35:105–120CrossRefPubMedGoogle Scholar
  45. 45.
    Hartvig NV, Jensen JL (2000) Spatial mixture modeling of fMRI data. Hum Brain Mapp 11:233–248CrossRefPubMedGoogle Scholar
  46. 46.
    Hayasaka S, Nichols TE (2003) Validating cluster size inference: random field and permutation methods. NeuroImage 20:2343–2356CrossRefPubMedGoogle Scholar
  47. 47.
    Friston KJ, Holmes A, Poline J-B, Price CJ, Frith CD (1996) Detecting activations in PET and fMRI: levels of inference and power. NeuroImage 4:223–235CrossRefPubMedGoogle Scholar
  48. 48.
    Nichols TE, Hayasaka S (2003) Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res 12:419–446CrossRefPubMedGoogle Scholar
  49. 49.
    Cao J, Worsley KJ (2001) Applications of random fields in human brain mapping. In: Moore M, (ed) Spatial statistics: methodological aspects and applications, vol 159, Springer lecture notes in statistics. Springer. pp 169–182Google Scholar
  50. 50.
    Worsley KJ, Evans AC, Marrett S, Neelin P (1992) Three-dimensional statistical analysis for cbf activation studies in human brain. J Cerebr Blood F Met 12:900–918CrossRefGoogle Scholar
  51. 51.
    Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73CrossRefPubMedGoogle Scholar
  52. 52.
    Hayasaka S, Luan Phan K, Liberzon I, Worsley KJ, Nichols TE (2004) Nonstationary cluster-size inference with random field and permutation methods. NeuroImage 22:676–687CrossRefPubMedGoogle Scholar
  53. 53.
    Nichols T, Holmes A (2001) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefGoogle Scholar
  54. 54.
    Bullmore E, Long C, Suckling J et al (2001) Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum Brain Mapp 12:61–78CrossRefPubMedGoogle Scholar
  55. 55.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300Google Scholar
  56. 56.
    Genovese C, Lazar N, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 15:870–878CrossRefPubMedGoogle Scholar
  57. 57.
    Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  58. 58.
    Everitt B, Bullmore E (1999) Mixture model mapping of brain activation in functional magnetic resonance images. Hum Brain Mapp 7:1–14CrossRefPubMedGoogle Scholar
  59. 59.
    Hartvig N (2000) A stochastic geometry model for fMRI data. Technical Report 410. Department of Theoretical Statistics, University of AarhusGoogle Scholar
  60. 60.
    Woolrich M, Behrens T (2006) Variational Bayes inference of spatial mixture models for segmentation. IEEE Trans Med Imaging 25:1380–1391CrossRefPubMedGoogle Scholar
  61. 61.
    Bartsch A, Homola G, Biller A, Solymosi L, Bendszus M (2006) Diagnostic functional MRI: illustrated clinical applications and decision-making. J Magn Reson Imaging 23:921–932CrossRefPubMedGoogle Scholar
  62. 62.
    Van De Ville D, Blu T, Unser M (2006) Surfing the brain – an overview of wavelet-based techniques for fMRI data analysis. IEEE Eng Med Biol 25:65–78CrossRefGoogle Scholar
  63. 63.
    Smith SM, Nichols TE (2008) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. doi: 10.1016/j.neuroimage.2008.03.061, In press; Epub ahead of print April 11, 2008Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mark W. Woolrich
    • 1
  • Christian F. Beckmann
    • 1
  • Thomas E. Nichols
    • 1
  • Stephen M. Smith
    • 1
  1. 1.Oxford University Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB)John Radcliffe HospitalOxfordUK

Personalised recommendations