Exosomes in Tumor Angiogenesis

  • Karma Z. Salem
  • Michele Moschetta
  • Antonio Sacco
  • Luisa Imberti
  • Giuseppe Rossi
  • Irene M. Ghobrial
  • Salomon Manier
  • Aldo M. Roccaro
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1464)

Abstract

Exosomes are small vesicles ranging in size between 30 and 150 nm, derived from the luminal membranes of the endosome and are constitutively released by fusion with the cell membrane. Several studies have revealed that exosomes play crucial roles in mediating local and systemic cell communication through the horizontal transfer of information in the form of nucleic material and proteins. This is particularly relevant in the context of the tumor-microenvironment cross talk. Here we describe the method of isolating exosomes and their role in modifying the tumor environment and more specifically in enabling metastasis and promoting angiogenesis.

Key words

Exosome Angiogenesis Cancer Tumor Microenvironment Pre-metastatic niche 

References

  1. 1.
    Janowska-Wieczorek A, Wysoczynski M, Kijowski J et al (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760CrossRefPubMedGoogle Scholar
  2. 2.
    Melo SA, Sugimoto H, O’Connell JT et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Peinado H, Aleckovic M, Lavotshkin S et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Roccaro AM, Sacco A, Maiso P et al (2013) BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 123:1542–1555CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Andreola G, Rivoltini L, Castelli C et al (2002) Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med 195:1303–1316CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL (2005) Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11:1010–1020PubMedGoogle Scholar
  7. 7.
    Liu C, Yu S, Zinn K et al (2006) Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol 176:1375–1385CrossRefPubMedGoogle Scholar
  8. 8.
    Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z (2008) Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 180:7249–7258CrossRefPubMedGoogle Scholar
  9. 9.
    Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protocol Cell Biol 30(3.22):3.22.1–3.22.29Google Scholar
  10. 10.
    Gupta D, Treon SP, Shima Y et al (2001) Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15:1950–1961CrossRefPubMedGoogle Scholar
  11. 11.
    Kumar S, Witzig TE, Timm M et al (2004) Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 104:1159–1165CrossRefPubMedGoogle Scholar
  12. 12.
    Hoshino A, Costa-Silva B, Shen TL et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Costa-Silva B, Aiello NM, Ocean AJ et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17:816–826CrossRefPubMedGoogle Scholar
  14. 14.
    Welti J, Loges S, Dimmeler S, Carmeliet P (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 123:3190–3200CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Prager GW, Poettler M, Unseld M, Zielinski CC (2012) Angiogenesis in cancer: Anti-VEGF escape mechanisms. Transl Lung Cancer Res 1:14–25PubMedPubMedCentralGoogle Scholar
  16. 16.
    Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584CrossRefPubMedGoogle Scholar
  17. 17.
    Lieu C, Heymach J, Overman M, Tran H, Kopetz S (2011) Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res 17:6130–6139CrossRefPubMedGoogle Scholar
  18. 18.
    Shim WS, Ho IA, Wong PE (2007) Angiopoietin: a TIE(d) balance in tumor angiogenesis. Mol Cancer Res 5:655–665CrossRefPubMedGoogle Scholar
  19. 19.
    Campbell NE, Kellenberger L, Greenaway J, Moorehead RA, Linnerth-Petrik NM, Petrik J (2010) Extracellular matrix proteins and tumor angiogenesis. J Oncol 2010:586905CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285CrossRefPubMedGoogle Scholar
  21. 21.
    Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bolos V, Gasent JM, Lopez-Tarruella S, Grande E (2010) The dual kinase complex FAK-Src as a promising therapeutic target in cancer. Onco Targets Ther 3:83–97CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ribeiro MF, Zhu H, Millard RW, Fan GC (2013) Exosomes function in pro- and anti-angiogenesis. Curr Angiogenes 2:54–59PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sheldon H, Heikamp E, Turley H et al (2010) New mechanism for Notch signaling to endothelium at a distance by delta-like 4 incorporation into exosomes. Blood 116:2385–2394CrossRefPubMedGoogle Scholar
  26. 26.
    Taraboletti G, D’Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V (2002) Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 160:673–680CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Taverna S, Flugy A, Saieva L et al (2012) Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer 130:2033–2043CrossRefPubMedGoogle Scholar
  28. 28.
    Mineo M, Garfield SH, Taverna S et al (2012) Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis 15:33–45CrossRefPubMedGoogle Scholar
  29. 29.
    Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH (2013) Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene 32:2747–2755CrossRefPubMedGoogle Scholar
  30. 30.
    Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kucharzewska P, Christianson HC, Welch JE et al (2013) Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A 110:7312–7317CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12:421CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Park JE, Tan HS, Datta A et al (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9:1085–1099CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hong BS, Cho JH, Kim H et al (2009) Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 10:556CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Karma Z. Salem
    • 1
  • Michele Moschetta
    • 1
  • Antonio Sacco
    • 1
  • Luisa Imberti
    • 2
  • Giuseppe Rossi
    • 2
  • Irene M. Ghobrial
    • 1
  • Salomon Manier
    • 1
  • Aldo M. Roccaro
    • 1
    • 2
  1. 1.Department of Medical OncologyDana-Farber Cancer Institute, Harvard Medical SchoolBostonUSA
  2. 2.ASST Spedali Civili, Department of Medical OncologyCREA LaboratoryBresciaItaly

Personalised recommendations