Skeletal Muscle Tissue Clearing for LacZ and Fluorescent Reporters, and Immunofluorescence Staining

  • Mayank Verma
  • Bhavani SR Murkonda
  • Yoko Asakura
  • Atsushi AsakuraEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1460)


Skeletal muscle is a highly ordered yet complex tissue containing several cell types that interact with each other in order to maintain structure and homeostasis. It is also a highly regenerative tissue that responds to damage in a highly intricate but stereotypic manner, with distinct spatial and temporal kinetics. Proper examination of this process requires one to look at the three-dimensional orientation of the cellular and subcellular components, which can be accomplished through tissue clearing. While there has been a recent surge of protocols to study biology in whole tissue, it has primarily focused on the nervous system. This chapter describes the workflow for whole mount analysis of murine skeletal muscle for LacZ reporters, fluorescent reporters and immunofluorescence staining. Using this technique, we are able to visualize LacZ reporters more effectively in deep tissue samples, and to perform fluorescent imaging with a depth greater than 1700 μm.

Key words

Skeletal muscle Tissue imaging tdTomato Green fluorescence protein (GFP) Satellite cell Tissue clearing lacZ reporter 


  1. 1.
    Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA (2013) Cellular dynamics in the muscle satellite cell niche. EMBO Rep 14:1062–1072. doi: 10.1038/embor.2013.182 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Christov C, Chretien F, Abou-Khalil R et al (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18:1397–1409CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yoshida S, Sukeno M, Nabeshima Y-I (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726. doi: 10.1126/science.1144885 CrossRefPubMedGoogle Scholar
  4. 4.
    Keefe AC, Lawson JA, Flygare SD et al (2015) Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 6:7087. doi: 10.1038/ncomms8087 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bosnakovski D, Xu Z, Li W et al (2008) Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells 26:3194–3204. doi: 10.1634/stemcells.2007-1017 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sambasivan R, Gayraud-Morel B, Dumas G et al (2009) Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 16:810–821. doi: 10.1016/j.devcel.2009.05.008 CrossRefPubMedGoogle Scholar
  7. 7.
    Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953. doi: 10.1038/nature03594
  8. 8.
    Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159:123–134. doi: 10.1083/jcb.200202092
  9. 9.
    Tajbakhsh S, Bober E, Babinet C et al (1996) Gene targeting the myf-5 locus with nlacZ reveals expression of this myogenic factor in mature skeletal muscle fibres as well as early embryonic muscle. Dev Dyn 206:291–300. doi: 10.1002/(SICI)1097-0177(199607)206:3<291::AID-AJA6>3.0.CO;2-D CrossRefPubMedGoogle Scholar
  10. 10.
    Renier N, Wu Z, Simon D, Yang J et al (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159(4):896–910. doi: 10.1016/j.cell.2014.10.010 CrossRefPubMedGoogle Scholar
  11. 11.
    Tainaka K, Kubota SI, Suyama TQ et al (2014) Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159:911–924. doi: 10.1016/j.cell.2014.10.034 CrossRefPubMedGoogle Scholar
  12. 12.
    Susaki EA, Tainaka K, Perrin D et al (2014) Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157:726–739. doi: 10.1016/j.cell.2014.03.042 CrossRefPubMedGoogle Scholar
  13. 13.
    Yang B, Treweek JB, Kulkarni RP et al (2014) Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158:945–958. doi: 10.1016/j.cell.2014.07.017 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tomer R, Ye L, Hsueh B, Deisseroth K (2014) Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 9:1682–1697. doi: 10.1038/nprot.2014.123 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hama H, Hioki H, Namiki K et al (2015) ScaleS: an optical clearing palette for biological imaging. Nat Neurosci 18:1518–1529. doi: 10.1038/nn.4107 CrossRefPubMedGoogle Scholar
  16. 16.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi: 10.1038/nmeth.2019 CrossRefPubMedGoogle Scholar
  17. 17.
    Vonesch C, Unser M (2008) A fast thresholded Landweber algorithm for wavelet-regularized multidimensional deconvolution. IEEE Trans Image Process 17:539–549. doi: 10.1109/TIP.2008.917103 CrossRefPubMedGoogle Scholar
  18. 18.
    Schmid B, Schindelin J, Cardona A et al (2010) A high-level 3D visualization API for Java and ImageJ. BMC Bioinformatics 11:274. doi: 10.1186/1471-2105-11-274 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    de Chaumont F, Dallongeville S, Chenouard N et al (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696. doi: 10.1038/nmeth.2075 CrossRefPubMedGoogle Scholar
  20. 20.
    Murphy MM, Lawson JA, Mathew SJ et al (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637. doi: 10.1242/jcs098228 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140. doi: 10.1038/nn.2467 CrossRefPubMedGoogle Scholar
  22. 22.
    Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138. doi: 10.1016/S0092-8674(00)80189-0 CrossRefPubMedGoogle Scholar
  23. 23.
    Kearney JB, Ambler CA, Monaco KA et al (2002) Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 99:2397–2407CrossRefPubMedGoogle Scholar
  24. 24.
    Brazelton TR, Blau HM (2005) Optimizing techniques for tracking transplanted stem cells in vivo. Stem Cells 23:1251–1265. doi: 10.1634/stemcells.2005-0149 CrossRefPubMedGoogle Scholar
  25. 25.
    Collins CA, Zammit PS (2009) Isolation and grafting of single muscle fibres. Methods Mol Biol 482:319–330CrossRefPubMedGoogle Scholar
  26. 26.
    Jackson KA, Snyder DS, Goodell MA (2004) Skeletal muscle fiber-specific green autofluorescence: potential for stem cell engraftment artifacts. Stem Cells 22:180–187. doi: 10.1634/stemcells.22-2-180 CrossRefPubMedGoogle Scholar
  27. 27.
    Liu W, Raben N, Ralston E (2013) Quantitative evaluation of skeletal muscle defects in second harmonic generation images. J Biomed Opt 18:26005. doi: 10.1117/1.JBO.18.2.026005 CrossRefPubMedGoogle Scholar
  28. 28.
    Wimmer VC, Möller A (2010) High-resolution confocal imaging in tissue. Methods Mol Biol 611:183–191. doi: 10.1007/978-1-60327-345-9_15 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mayank Verma
    • 1
    • 2
    • 3
    • 4
  • Bhavani SR Murkonda
    • 2
    • 3
    • 4
  • Yoko Asakura
    • 2
    • 3
    • 4
  • Atsushi Asakura
    • 2
    • 3
    • 4
    Email author
  1. 1.Medical Scientist Training ProgramUniversity of Minnesota Medical SchoolMinneapolisUSA
  2. 2.Stem Cell InstituteUniversity of Minnesota Medical SchoolMinneapolisUSA
  3. 3.Paul & Sheila Wellstone Muscular Dystrophy CenterUniversity of Minnesota Medical SchoolMinneapolisUSA
  4. 4.Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations