Advertisement

Cilia pp 237-243 | Cite as

Analysis of Axonemal Assembly During Ciliary Regeneration in Chlamydomonas

  • Emily L. Hunter
  • Winfield S. SaleEmail author
  • Lea M. Alford
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1454)

Abstract

Chlamydomonas reinhardtii is an outstanding model genetic organism for study of assembly of cilia. Here, methods are described for synchronization of ciliary regeneration in Chlamydomonas to analyze the sequence in which ciliary proteins assemble. In addition, the methods described allow analysis of the mechanisms involved in regulation of ciliary length, the proteins required for ciliary assembly, and the temporal expression of genes encoding ciliary proteins. Ultimately, these methods can contribute to discovery of conserved genes that when defective lead to abnormal ciliary assembly and human disease.

Key words

Chlamydomonas Ciliary regeneration pH shock Deciliation Axonemal assembly 

Notes

Acknowledgements

This work was supported by grants from the NIH (GM051173, WSS; Training Grant K12 GM000680, LMA; Training Grant 5T32 GM00836725, ELH) and the American Heart Association (14PRE19510013, ELH).

References

  1. 1.
    Drummond IA (2012) Cilia functions in development. Curr Opin Cell Biol 24(1):24–30. doi: 10.1016/j.ceb.2011.12.007, S0955-0674(11)00169-4 [pii]CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Satir P, Heuser T, Sale WS (2014) A structural basis for how motile cilia beat. Bioscience 64(12):1073–1083. doi: 10.1093/Biosci/Biu180 CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Brown JM, Witman GB (2014) Cilia and diseases. Bioscience 64(12):1126–1137. doi: 10.1093/Biosci/Biu174 CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Oh EC, Katsanis N (2012) Cilia in vertebrate development and disease. Development 139(3):443–448. doi: 10.1242/dev.050054 CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364(16):1533–1543. doi: 10.1056/NEJMra1010172 CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Garcia-Gonzalo FR, Reiter JF (2012) Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J Cell Biol 197(6):697–709. doi: 10.1083/Jcb.201111146 CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kim S, Dynlacht BD (2013) Assembling a primary cilium. Curr Opin Cell Biol 25(4):506–511. doi: 10.1016/J.Ceb.2013.04.011 CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Avasthi P, Marshall WF (2012) Stages of ciliogenesis and regulation of ciliary length. Differentiation 83(2):30–42. doi: 10.1016/J.Diff.2011.11.015 CrossRefGoogle Scholar
  9. 9.
    Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell's antenna. Nat Rev Mol Cell Biol 12(4):222–234. doi: 10.1038/nrm3085 CrossRefGoogle Scholar
  10. 10.
    Silflow CD, Lefebvre PA (2001) Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii. Plant Physiol 127(4):1500–1507CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Dutcher SK (2014) The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 71(2):79–94. doi: 10.1002/cm.21157 CrossRefGoogle Scholar
  12. 12.
    Lin H, Dutcher SK (2015) Genetic and genomic approaches to identify genes involved in flagellar assembly in Chlamydomonas reinhardtii. Methods Cell Biol 127:349–386. doi: 10.1016/bs.mcb.2014.12.001, S0091-679X(14)00046-6 [pii]CrossRefGoogle Scholar
  13. 13.
    Stolc V, Samanta MP, Tongprasit W, Marshall WF (2005) Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes. Proc Natl Acad Sci U S A 102(10):3703–3707CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Pedersen LB, Rosenbaum JL (2008) Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol 85:23–61. doi: 10.1016/S0070-2153(08)00802-8, S0070-2153(08)00802-8 [pii]CrossRefGoogle Scholar
  15. 15.
    Awata J, Takada S, Standley C, Lechtreck KF, Bellve KD, Pazour GJ, Fogarty KE, Witman GB (2014) NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J Cell Sci 127(21):4714–4727. doi: 10.1242/Jcs.155275 CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Reiter JF, Blacque OE, Leroux MR (2012) The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 13(7):608–618. doi: 10.1038/embor.2012.73, embor201273 [pii]CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Craige B, Tsao CC, Diener DR, Hou Y, Lechtreck KF, Rosenbaum JL, Witman GB (2010) CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190(5):927–940. doi: 10.1083/jcb.201006105, jcb.201006105 [pii]CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kamiya R, Yagi T (2014) Functional diversity of axonemal dyneins as assessed by in vitro and in vivo motility assays of Chlamydomonas mutants. Zool Sci 31(10):633–644. doi: 10.2108/Zs140066 CrossRefGoogle Scholar
  19. 19.
    Kobayashi D, Takeda H (2012) Ciliary motility: the components and cytoplasmic preassembly mechanisms of the axonemal dyneins. Differentiation 83(2):S23–S29. doi: 10.1016/j.diff.2011.11.009, S0301-4681(11)00199-X [pii]CrossRefGoogle Scholar
  20. 20.
    Viswanadha R, Hunter EL, Yamamoto R, Wirschell M, Alford LM, Dutcher SK, Sale WS (2014) The ciliary inner dynein arm, I1 Dynein, is assembled in the cytoplasm and transported by IFT before axonemal docking. Cytoskeleton 71(10):573–586. doi: 10.1002/Cm.21192 CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ahmed NT, Gao C, Lucker BF, Cole DG, Mitchell DR (2008) ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J Cell Biol 183(2):313–322CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Desai PB, Freshour JR, Mitchell DR (2015) Chlamydomonas axonemal dynein assembly locus ODA8 encodes a conserved flagellar protein needed for cytoplasmic maturation of outer dynein arm complexes. Cytoskeleton 72(1):16–28. doi: 10.1002/Cm.21206 CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Remillard SP, Witman GB (1982) Synthesis, transport, and utilization of specific flagellar proteins during flagellar regeneration in Chlamydomonas. J Cell Biol 93(3):615–631CrossRefGoogle Scholar
  24. 24.
    Lefebvre PA (1995) Flagellar amputation and regeneration in Chlamydomonas. Methods Cell Biol 47:3–7CrossRefGoogle Scholar
  25. 25.
    Engel BD, Ludington WB, Marshall WF (2009) Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol 187(1):81–89. doi: 10.1083/jcb.200812084, jcb.200812084 [pii]CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Engel BD, Ishikawa H, Wemmer KA, Geimer S, Wakabayashi K, Hirono M, Craige B, Pazour GJ, Witman GB, Kamiya R, Marshall WF (2012) The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. J Cell Biol 199(1):151–167. doi: 10.1083/jcb.201206068, jcb.201206068 [pii]CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Dentler W (2013) A role for the membrane in regulating Chlamydomonas flagellar length. PLoS One 8(1), e53366. doi: 10.1371/journal.pone.0053366, PONE-D-12-27278 [pii]CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Tam LW, Wilson NF, Lefebvre PA (2007) A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J Cell Biol 176(6):819–829. doi: 10.1083/jcb.200610022, jcb.200610022 [pii]CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hilton LK, Gunawardane K, Kim JW, Schwarz MC, Quarmby LM (2013) The kinases LF4 and CNK2 control ciliary length by feedback regulation of assembly and disassembly rates. Curr Biol 23(22):2208–2214. doi: 10.1016/J.Cub.2013.09.038 CrossRefGoogle Scholar
  30. 30.
    Lefebvre PA (2009) Flagellar Length Control. In: Witman GB (ed) The Chlamydomonas sourcebook, vol 3, 2nd edn. Academic, Amsterdam, pp 115–129. doi: 10.1016/B978-0-12-370873-1.00042-3 CrossRefGoogle Scholar
  31. 31.
    Quarmby LM (2004) Cellular deflagellation. Int Rev Cytol 233:47–91. doi: 10.1016/S0074-7696(04)33002-0, S0074769604330020 [pii]CrossRefPubMedGoogle Scholar
  32. 32.
    Parker JD, Hilton LK, Diener DR, Rasi MQ, Mahjoub MR, Rosenbaum JL, Quarmby LM (2010) Centrioles are freed from cilia by severing prior to mitosis. Cytoskeleton (Hoboken) 67(7):425–430. doi: 10.1002/cm.20454 CrossRefGoogle Scholar
  33. 33.
    Quarmby L (2009) Deflagellation. In: Witman GB (ed) The Chlamydomonas sourcebook, vol 3. Academic, Amsterdam, pp 43–69. doi: 10.1016/B978-0-12-370873-1.00040-X CrossRefGoogle Scholar
  34. 34.
    Satir B, Sale WS, Satir P (1976) Membrane renewal after dibucaine deciliation of Tetrahymena. Freeze-fracture technique, cilia, membrane structure. Exp Cell Res 97:83–91CrossRefPubMedGoogle Scholar
  35. 35.
    Diener DR, Lupetti P, Rosenbaum JL (2015) Proteomic analysis of isolated ciliary transition zones reveals the presence of ESCRT proteins. Curr Biol 25(3):379–384. doi: 10.1016/J.Cub.2014.11.066 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Silflow CD, Rosenbaum JL (1981) Multiple alpha- and beta-tubulin genes in Chlamydomonas and regulation of tubulin mRNA levels after deflagellation. Cell 24(1):81–88CrossRefPubMedGoogle Scholar
  37. 37.
    Johnson KA, Rosenbaum JL (1992) Polarity of flagellar assembly in Chlamydomonas. J Cell Biol 119(6):1605–1611CrossRefPubMedGoogle Scholar
  38. 38.
    Craft JM, Harris JA, Hyman S, Kner P, Lechtreck KF (2015) Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J Cell Biol 208(2):223–237. doi: 10.1083/Jcb.201409036 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liang YW, Pang YN, Wu Q, Hu ZF, Han X, Xu YS, Deng HT, Pan JM (2014) FLA8/KIF3B phosphorylation regulates kinesin-II interaction with IFT-B to control IFT entry and turnaround. Dev Cell 30(5):585–597. doi: 10.1016/J.Devcel.2014.07.019 CrossRefPubMedGoogle Scholar
  40. 40.
    Avasthi P, Onishi M, Karpiak J, Yamamoto R, Mackinder L, Jonikas MC, Sale WS, Shoichet B, Pringle JR, Marshall WF (2014) Actin is required for IFT regulation in Chlamydomonas reinhardtii. Curr Biol 24(17):2025–2032. doi: 10.1016/J.Cub.2014.07.038 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tammana TVS, Tammana D, Diener DR, Rosenbaum J (2013) Centrosomal protein CEP104 (Chlamydomonas FAP256) moves to the ciliary tip during ciliary assembly. J Cell Sci 126(21):5018–5029. doi: 10.1242/Jcs.133439 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Alford LM, Mattheyses AL, Hunter EL, Lin H, Dutcher SK, Sale WS (2013) The Chlamydomonas mutant pf27 reveals novel features of ciliary radial spoke assembly. Cytoskeleton (Hoboken) 70(12):804–818. doi: 10.1002/cm.21144 CrossRefGoogle Scholar
  43. 43.
    Witman GB (1986) Isolation of Chlamydomonas flagella and flagellar axonemes. Methods Enzymol 134:280–290CrossRefPubMedGoogle Scholar
  44. 44.
    Huang B, Rifkin MR, Luck DJ (1977) Temperature-sensitive mutations affecting flagellar assembly and function in Chlamydomonas reinhardtii. J Cell Biol 72(1):67–85CrossRefPubMedGoogle Scholar
  45. 45.
    Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170(1):103–113CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 54(6):1665–1669CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sager R, Granick S (1953) Nutritional studies with Chlamydomonas reinhardtii. Ann N Y Acad Sci 466:18–30Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Emily L. Hunter
    • 1
  • Winfield S. Sale
    • 1
    Email author
  • Lea M. Alford
    • 1
  1. 1.Department of Cell BiologyEmory UniversityAtlantaUSA

Personalised recommendations