Cilia pp 215-236 | Cite as

Methods to Study Centrosomes and Cilia in Drosophila

  • Swadhin Chandra JanaEmail author
  • Susana Mendonça
  • Sascha Werner
  • Monica Bettencourt-DiasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1454)


Centrioles and cilia are highly conserved eukaryotic organelles. Drosophila melanogaster is a powerful genetic and cell biology model organism, extensively used to discover underlying mechanisms of centrosome and cilia biogenesis and function. Defects in centrosomes and cilia reduce fertility and affect different sensory functions, such as proprioception, olfaction, and hearing. The fly possesses a large diversity of ciliary structures and assembly modes, such as motile, immotile, and intraflagellar transport (IFT)-independent or IFT-dependent assembly. Moreover, all the diverse ciliated cells harbor centrioles at the base of the cilia, called basal bodies, making the fly an attractive model to better understand the biology of this organelle. This chapter describes protocols to visualize centrosomes and cilia by fluorescence and electron microscopy.

Key words

Drosophila Centrosome Basal body Cilia Intraflagellar transport Sensory neuron Sperm 



We apologize to colleagues whose work was not discussed or cited due to space constraints. We thank the IGC imaging unit (Light microscopy and Electron microscopy) for the help with image acquisition, and the IGC fly facility, and MBD Lab for discussions. S.C.J. and S.W. are supported by the FCT (Fundação Portuguesa para a Ciência e Tecnologia) Fellowships SFRH/BPD/87479/2012 and SFRH/BD/52176/2013, respectively. The laboratory and MBD are supported by an EMBO installation grant and an ERC starting grant.


  1. 1.
    Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA (2011) Centrosomes and cilia in human disease. Trends Genet 27:307–315CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Jana SC, Marteil G, Bettencourt-Dias M (2014) Mapping molecules to structure: unveiling secrets of centriole and cilia assembly with near-atomic resolution. Curr Opin Cell Biol 26:96–106CrossRefGoogle Scholar
  3. 3.
    Kozminski KG, Beech PL, Rosenbaum JL (1995) The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol 131:1517–1527CrossRefGoogle Scholar
  4. 4.
    Signor D, Wedaman KP, Rose LS, Scholey JM (1999) Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans. Mol Biol Cell 10:345–360CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Dubruille R, Laurencon A, Vandaele C, Shishido E, Coulon-Bublex M, Swoboda P, Couble P, Kernan M, Durand B (2002) Drosophila regulatory factor X is necessary for ciliated sensory neuron differentiation. Development 129:5487–5498CrossRefGoogle Scholar
  6. 6.
    Amack JD, Yost HJ (2004) The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr Biol 14:685–690CrossRefGoogle Scholar
  7. 7.
    Tonna EA, Lampen NM (1972) Electron microscopy of aging skeletal cells. I. Centrioles and solitary cilia. J Gerontol 27:316–324CrossRefGoogle Scholar
  8. 8.
    Postlethwait JH, Schneiderman HA (1969) A clonal analysis of determination in Antennapedia a homoeotic mutant of Drosophila melanogaster. Proc Natl Acad Sci U S A 64:176–183CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Ursprung H, Conscience-Egli M, Fox DJ, Wallimann T (1972) Origin of leg musculature during Drosophila metamorphosis. Proc Natl Acad Sci U S A 69:2812–2813CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Horikawa M, Fox AS (1964) Culture of embryonic cells of Drosophila melanogaster in vitro. Science 145:1437–1439CrossRefGoogle Scholar
  11. 11.
    Hotta Y, Benzer S (1972) Mapping of behaviour in Drosophila mosaics. Nature 240:527–535CrossRefGoogle Scholar
  12. 12.
    Li K, Xu EY, Cecil JK, Turner FR, Megraw TL, Kaufman TC (1998) Drosophila centrosomin protein is required for male meiosis and assembly of the flagellar axoneme. J Cell Biol 141:455–467CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Callaini G, Riparbelli MG (1990) Centriole and centrosome cycle in the early Drosophila embryo. J Cell Sci 97(Pt 3):539–543Google Scholar
  14. 14.
    Mahowald AP, Strassheim JM (1970) Intercellular migration of centrioles in the germarium of Drosophila melanogaster. An electron microscopic study. J Cell Biol 45:306–320CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Enjolras C, Thomas J, Chhin B, Cortier E, Duteyrat JL, Soulavie F, Kernan MJ, Laurencon A, Durand B (2012) Drosophila chibby is required for basal body formation and ciliogenesis but not for Wg signaling. J Cell Biol 197:313–325CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Carvalho-Santos Z, Machado P, Branco P, Tavares-Cadete F, Rodrigues-Martins A, Pereira-Leal JB, Bettencourt-Dias M (2010) Stepwise evolution of the centriole-assembly pathway. J Cell Sci 123:1414–1426CrossRefGoogle Scholar
  17. 17.
    Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M (2011) Evolution: tracing the origins of centrioles, cilia, and flagella. J Cell Biol 194:165–175CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Avidor-Reiss T, Maer AM, Koundakjian E, Polyanovsky A, Keil T, Subramaniam S, Zuker CS (2004) Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117:527–539CrossRefGoogle Scholar
  19. 19.
    Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG, Khodjakov A, Raff JW (2006) Flies without centrioles. Cell 125:1375–1386CrossRefGoogle Scholar
  20. 20.
    Jana SC, Girotra M, Ray K (2011) Heterotrimeric kinesin-II is necessary and sufficient to promote different stepwise assembly of morphologically distinct bipartite cilia in Drosophila antenna. Mol Biol Cell 22:769–781CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Han YG, Kwok BH, Kernan MJ (2003) Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm. Curr Biol 13:1679–1686CrossRefGoogle Scholar
  22. 22.
    Carvalho-Santos Z, Machado P, Alvarez-Martins I, Gouveia SM, Jana SC, Duarte P, Amado T, Branco P, Freitas MC, Silva ST et al (2012) BLD10/CEP135 is a microtubule-associated protein that controls the formation of the flagellum central microtubule pair. Dev Cell 23:412–424CrossRefGoogle Scholar
  23. 23.
    Riparbelli MG, Callaini G, Megraw TL (2012) Assembly and persistence of primary cilia in dividing Drosophila spermatocytes. Dev Cell 23:425–432CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Briggs LJ, Davidge JA, Wickstead B, Ginger ML, Gull K (2004) More than one way to build a flagellum: comparative genomics of parasitic protozoa. Curr Biol 14:R611–R612CrossRefGoogle Scholar
  25. 25.
    Broekhuis JR, Verhey KJ, Jansen G (2014) Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells. PLoS One 9, e108470CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Blachon S, Cai X, Roberts KA, Yang K, Polyanovsky A, Church A, Avidor-Reiss T (2009) A proximal centriole-like structure is present in Drosophila spermatids and can serve as a model to study centriole duplication. Genetics 182:133–144CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Gottardo M, Callaini G, Riparbelli MG (2015) The Drosophila centriole - conversion of doublets into triplets within the stem cell niche. J Cell Sci 128:2437–2442CrossRefGoogle Scholar
  28. 28.
    Martins AR, Machado P, Callaini G, Bettencourt-Dias M (2010) Microscopy methods for the study of centriole biogenesis and function in Drosophila. Methods Cell Biol 97:223–242CrossRefGoogle Scholar
  29. 29.
    Vieillard J, Duteyrat JL, Cortier E, Durand B (2015) Imaging cilia in Drosophila melanogaster. Methods Cell Biol 127:279–302CrossRefGoogle Scholar
  30. 30.
    Basiri ML, Blachon S, Chim YC, Avidor-Reiss T (2013) Imaging centrosomes in fly testes. J Vis Exp 2013:e50938Google Scholar
  31. 31.
    Ma L, Jarman AP (2011) Dilatory is a Drosophila protein related to AZI1 (CEP131) that is located at the ciliary base and required for cilium formation. J Cell Sci 124:2622–2630CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Noguchi T, Koizumi M, Hayashi S (2011) Sustained elongation of sperm tail promoted by local remodeling of giant mitochondria in Drosophila. Curr Biol 21:805–814CrossRefGoogle Scholar
  33. 33.
    Kavlie RG, Albert JT (2013) Chordotonal organs. Curr Biol 23:R334–R335CrossRefGoogle Scholar
  34. 34.
    Mishra M (2015) A quick method to investigate the Drosophila Johnston’s organ by confocal microscopy. Journal of Microscopy and Ultrastructure 3:1–7CrossRefGoogle Scholar
  35. 35.
    Bechstedt S, Albert JT, Kreil DP, Muller-Reichert T, Gopfert MC, Howard J (2010) A doublecortin containing microtubule-associated protein is implicated in mechanotransduction in Drosophila sensory cilia. Nat Commun 1:11CrossRefGoogle Scholar
  36. 36.
    Lee E, Sivan-Loukianova E, Eberl DF, Kernan MJ (2008) An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr Biol 18:1899–1906CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Eberl DF, Hardy RW, Kernan MJ (2000) Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci 20:5981–5988Google Scholar
  38. 38.
    Mendes Maia T, Gogendeau D, Pennetier C, Janke C, Basto R (2014) Bug22 influences cilium morphology and the post-translational modification of ciliary microtubules. Biol Open 3:138–151CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234CrossRefGoogle Scholar
  40. 40.
    Liang X, Madrid J, Saleh HS, Howard J (2011) NOMPC, a member of the TRP channel family, localizes to the tubular body and distal cilium of Drosophila campaniform and chordotonal receptor cells. Cytoskeleton (Hoboken) 68:1–7CrossRefGoogle Scholar
  41. 41.
    Newton FG, zur Lage PI, Karak S, Moore DJ, Gopfert MC, Jarman AP (2012) Forkhead transcription factor Fd3F cooperates with Rfx to regulate a gene expression program for mechanosensory cilia specialization. Dev Cell 22:1221–1233CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA, Lee Y, Lee HW, Chang DJ, Kaang BK et al (2004) Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 24:9059–9066CrossRefGoogle Scholar
  43. 43.
    Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4, e20CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Baker JD, Adhikarakunnathu S, Kernan MJ (2004) Mechanosensory-defective, male-sterile unc mutants identify a novel basal body protein required for ciliogenesis in Drosophila. Development 131:3411–3422CrossRefGoogle Scholar
  45. 45.
    Basiri ML, Ha A, Chadha A, Clark NM, Polyanovsky A, Cook B, Avidor-Reiss T (2014) A migrating ciliary gate compartmentalizes the site of axoneme assembly in Drosophila spermatids. Curr Biol 24:2622–2631CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Mottier-Pavie V, Megraw TL (2009) Drosophila bld10 is a centriolar protein that regulates centriole, basal body, and motile cilium assembly. Mol Biol Cell 20:2605–2614CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Rodrigues-Martins A, Bettencourt-Dias M, Riparbelli M, Ferreira C, Ferreira I, Callaini G, Glover DM (2007) DSAS-6 organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly. Curr Biol 17:1465–1472CrossRefGoogle Scholar
  48. 48.
    Dzhindzhev NS, Yu QD, Weiskopf K, Tzolovsky G, Cunha-Ferreira I, Riparbelli M, Rodrigues-Martins A, Bettencourt-Dias M, Callaini G, Glover DM (2010) Asterless is a scaffold for the onset of centriole assembly. Nature 467:714–718CrossRefGoogle Scholar
  49. 49.
    Galletta BJ, Guillen RX, Fagerstrom CJ, Brownlee CW, Lerit DA, Megraw TL, Rogers GC, Rusan NM (2014) Drosophila pericentrin requires interaction with calmodulin for its function at centrosomes and neuronal basal bodies but not at sperm basal bodies. Mol Biol Cell 25:2682–2694CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Conduit PT, Raff JW (2015) Different Drosophila cell types exhibit differences in mitotic centrosome assembly dynamics. Curr Biol 25:R650–R651CrossRefPubMedCentralGoogle Scholar
  51. 51.
    Laurencon A, Dubruille R, Efimenko E, Grenier G, Bissett R, Cortier E, Rolland V, Swoboda P, Durand B (2007) Identification of novel regulatory factor X (RFX) target genes by comparative genomics in Drosophila species. Genome Biol 8:R195CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Instituto Gulbenkian de CiênciaOeirasPortugal

Personalised recommendations