Zebrafish pp 343-354 | Cite as

Fiber Optic-Based Photostimulation of Larval Zebrafish

  • Aristides B. ArrenbergEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1451)


The perturbation of neural activity is a powerful experimental approach for understanding brain function. Light-gated ion channels and pumps (optogenetics) can be used to control neural activity with high temporal and spatial precision in animal models. This optogenetic approach requires suitable methods for delivering light to the brain. In zebrafish, fiber optic stimulation of agarose-embedded larvae has successfully been used in several studies to control neural activity and behavior. This approach is easy to implement and cost-efficient. Here, a protocol for fiber optic-based photostimulation of larval zebrafish is provided.

Key words

Optic fiber Photostimulation Zebrafish Optogenetics Laser Agarose Mounting 



I thank Tod R. Thiele, António M. Fernandes, and Christian Brysch for comments on the manuscript, and Tod R. Thiele for contributing his experience regarding zebrafish fiber optic experiments. I am grateful to Wolfgang Driever for support. This study was supported by the Excellence Initiative of the German Federal and State Governments DFG EXC307 (CIN - Interdisciplinary Centre for Integrative Neuroscience), DFG EXC294 (BIOSS - Centre for Biological Signalling Studies), as well as the Baden-Württemberg Stiftung (Eliteprogramme for Postdocs).


  1. 1.
    Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. doi: 10.1146/annurev-neuro-061010-113817 CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang F, Wang L, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639. doi: 10.1038/nature05744 CrossRefPubMedGoogle Scholar
  3. 3.
    Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268. doi: 10.1038/nn1525 CrossRefPubMedGoogle Scholar
  4. 4.
    Baier H, Scott EK (2009) Genetic and optical targeting of neural circuits and behavior—zebrafish in the spotlight. Curr Opin Neurbiol 19(5):553–560. doi: 10.1016/j.conb.2009.08.001 CrossRefGoogle Scholar
  5. 5.
    Vaziri A, Emiliani V (2012) Reshaping the optical dimension in optogenetics. Curr Opin Neurbiol 22(1):128–137. doi: 10.1016/j.conb.2011.11.011 CrossRefGoogle Scholar
  6. 6.
    Zhu P, Fajardo O, Shum J et al (2012) High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device. Nat Protoc 7(7):1410–1425. doi: 10.1038/nprot.2012.072 CrossRefPubMedGoogle Scholar
  7. 7.
    Rickgauer JP, Tank DW (2009) Two-photon excitation of channelrhodopsin-2 at saturation. Proc Natl Acad Sci U S A 106(35):15025–15030. doi: 10.1073/pnas.0907084106 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Arrenberg AB, Del Bene F, Baier H (2009) Optical control of zebrafish behavior with halorhodopsin. Proc Natl Acad Sci U S A 106(42):17968–17973. doi: 10.1073/pnas.0906252106 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fajardo O, Zhu P, Friedrich RW (2013) Control of a specific motor program by a small brain area in zebrafish. Front Neural Circ 7:67. doi: 10.3389/fncir.2013.00067 Google Scholar
  10. 10.
    Campagnola L, Wang H, Zylka MJ (2008) Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing channelrhodopsin-2. J Neurosci Methods 169(1):27–33. doi: 10.1016/j.jneumeth.2007.11.012 CrossRefPubMedGoogle Scholar
  11. 11.
    Schoonheim PJ, Arrenberg AB, Del Bene F et al (2010) Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish. J Neurosci 30(20):7111–7120. doi: 10.1523/JNEUROSCI.5193-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Thiele TR, Donovan JC, Baier H (2014) Descending control of swim posture by a midbrain nucleus in zebrafish. Neuron 83(3):679–691. doi: 10.1016/j.neuron.2014.04.018 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Aravanis AM, Wang L, Zhang F et al (2007) An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng 4(3):S143–S156. doi: 10.1088/1741-2560/4/3/S02 CrossRefPubMedGoogle Scholar
  14. 14.
    Lister JA, Robertson CP, Lepage T et al (1999) Nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126(17):3757–3767PubMedGoogle Scholar
  15. 15.
    Kubo F, Hablitzel B, Dal Maschio M et al (2014) Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron 81(6):1344–1359. doi: 10.1016/j.neuron.2014.02.043 CrossRefPubMedGoogle Scholar
  16. 16.
    Gonçalves PJ, Arrenberg AB, Hablitzel B et al (2014) Optogenetic perturbations reveal the dynamics of an oculomotor integrator. Front Neural Circ 8:10. doi: 10.3389/fncir.2014.00010 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Neurobiology, Centre for Integrative NeuroscienceUniversity of TübingenTübingenGermany
  2. 2.Developmental Biology, Faculty of BiologyInstitute Biology IFreiburgGermany
  3. 3.BIOSS-Centre for Biological Signalling StudiesAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations