Zebrafish pp 225-235 | Cite as

Methodologies for Inducing Cardiac Injury and Assaying Regeneration in Adult Zebrafish

  • Jinhu Wang
  • Kenneth D. PossEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1451)


The zebrafish has emerged as an important model organism for understanding the cellular and molecular mechanisms of tissue regeneration. Adult zebrafish efficiently replace cardiac muscle after partial resection of their ventricle, or after transgenic ablation of cardiomyocytes. Here, we describe methodology for inducing these injuries and assaying indicators of regeneration.

Key words

Zebrafish Heart Surgery Ablation Cardiomyocyte Regeneration 



This work was funded by postdoctoral fellowships from the American Heart Association to J.W. and grants from NIH (HL081674, HL131319) and American Federation for Aging Research to K.D.P. We thank Amy Dickson and Anne Knecht for reviewing and contributing to this manuscript.


  1. 1.
    Bader D, Oberpriller JO (1978) Repair and reorganization of minced cardiac muscle in the adult newt. J Morphol 155:349–357CrossRefPubMedGoogle Scholar
  2. 2.
    Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187:249–253CrossRefPubMedGoogle Scholar
  3. 3.
    Schnabel K, Wu CC, Kurth T, Weidinger G (2011) Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One 6:e18503CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gonzalez-Rosa JM, Martin V, Peralta M, Torres M, Mercader N (2011) Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138:1663–1674CrossRefPubMedGoogle Scholar
  5. 5.
    Chablais F, Veit J, Rainer G, Jazwinska A (2011) The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 11:21CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang J, Panakova D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, Singh SP, Dickson AL, Lin YF, Sabeh MK, Werdich AA, Yelon D, Macrae CA, Poss KD (2011) The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138:3421–3430CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, Macrae CA, Stainier DY, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 464:601–605CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jopling C, Sleep E, Raya M, Marti M, Raya A, Belmonte JC (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464:606–609CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kikuchi K, Holdway JE, Major RJ, Blum N, Dahn RD, Begemann G, Poss KD (2011) Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 20:397–404CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kikuchi K, Gupta V, Wang J, Holdway JE, Wills AA, Fang Y, Poss KD (2011) tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138:2895–2902CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kim J, Wu Q, Zhang Y, Wiens KM, Huang Y, Rubin N, Shimada H, Handin RI, Chao MY, Tuan TL, Starnes VA, Lien CL (2010) PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc Natl Acad Sci U S A 107:17206–17210CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127:607–619CrossRefPubMedGoogle Scholar
  13. 13.
    Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436CrossRefPubMedGoogle Scholar
  14. 14.
    Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270CrossRefPubMedGoogle Scholar
  15. 15.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Huang GN, Thatcher JE, McAnally J, Kong Y, Qi X, Tan W, DiMaio JM, Amatruda JF, Gerard RD, Hill JA, Bassel-Duby R, Olson EN (2012) C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338:1599–1603CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Smart N, Bollini S, Dube KN, Vieira JM, Zhou B, Davidson S, Yellon D, Riegler J, Price AN, Lythgoe MF, Pu WT, Riley PR (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474:640–644CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhou B, Honor LB, He H, Ma Q, Oh JH, Butterfield C, Lin RZ, Melero-Martin JM, Dolmatova E, Duffy HS, Gise A, Zhou P, Hu YW, Wang G, Zhang B, Wang L, Hall JL, Moses MA, McGowan FX, Pu WT (2011) Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest 121:1894–1904CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang J, Karra R, Dickson AL, Poss KD (2013) Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol 382:427–435CrossRefPubMedGoogle Scholar
  20. 20.
    Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR, Riley PR (2007) Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445:177–182CrossRefPubMedGoogle Scholar
  21. 21.
    Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Cell BiologyDuke University Medical CenterDurhamUSA

Personalised recommendations