Nicotinic Acetylcholine Receptor Technologies pp 77-96

Part of the Neuromethods book series (NM, volume 117)

| Cite as

Emerging Technologies in the Analysis of C. elegans Nicotinic Acetylcholine Receptors



Genetic studies in the model organism Caenorhabditis elegans have made valuable contributions to continuing advances in our understanding of cholinergic synapse biology and cholinergic transmission. C. elegans possesses a large and diverse family of nicotinic acetylcholine receptor (nAChR) subunits that share significant sequence similarity with vertebrate nAChR subunits. As is the case for vertebrates, C. elegans nAChR subtypes mediate excitatory synaptic responses to ACh release at the neuromuscular junction and are also widely expressed in the nervous system. Detailed knowledge of C. elegans neural connectivity patterns (wiring diagram), coupled with the ease of genetic manipulations in this system, enables high-resolution investigations into functional roles for specific receptor subtypes in the context of anatomically defined circuits. In this chapter, we review methods for the analysis of C. elegans nAChRs with an emphasis on strategies for identifying and characterizing genes involved in their biological regulation in the nervous system. These methods can be easily adapted to the study of other organisms as well as other receptor classes.

Key words

Neuromuscular junction C. elegans Gain-of-function nAChR Transgenic animal Synapse imaging Fluorescent microscope Trafficking 


  1. 1.
    Jones AK, Sattelle DB (2004) Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26:39–49CrossRefPubMedGoogle Scholar
  2. 2.
    Jones AK, Davis P, Hodgkin J, Sattelle DB (2007) The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature. Invert Neurosci 7:129–131CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mongan NP, Jones AK, Smith GR, Sansom MS, Sattelle DB (2002) Novel alpha7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. Protein Sci 11:1162–1171CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rand JB (2007) Acetylcholine, WormBook, ed. The C. elegans Research Community, WormBook, doi:10.1895/wormbook.1.131.1,
  5. 5.
    Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7:e1001066CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340CrossRefPubMedGoogle Scholar
  7. 7.
    Duerr JS, Han HP, Fields SD, Rand JB (2008) Identification of major classes of cholinergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 506:398–408CrossRefPubMedGoogle Scholar
  8. 8.
    Halevi S, McKay J, Palfreyman M, Yassin L, Eshel M et al (2002) The C. elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors. EMBO J 21:1012–1020CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Millar NS (2008) RIC-3: a nicotinic acetylcholine receptor chaperone. Br J Pharmacol 153(Suppl 1):S177–S183PubMedPubMedCentralGoogle Scholar
  10. 10.
    Treinin M (2008) RIC-3 and nicotinic acetylcholine receptors: biogenesis, properties, and diversity. Biotechnol J 3:1539–1547CrossRefPubMedGoogle Scholar
  11. 11.
    Babu K, Hu Z, Chien SC, Garriga G, Kaplan JM (2011) The immunoglobulin super family protein RIG-3 prevents synaptic potentiation and regulates Wnt signaling. Neuron 71:103–116CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jensen M, Hoerndli FJ, Brockie PJ, Wang R, Johnson E et al (2012) Wnt signaling regulates acetylcholine receptor translocation and synaptic plasticity in the adult nervous system. Cell 149:173–187CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Budnik V, Salinas PC (2011) Wnt signaling during synaptic development and plasticity. Curr Opin Neurobiol 21:151–159CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dickins EM, Salinas PC (2013) Wnts in action: from synapse formation to synaptic maintenance. Front Cell Neurosci 7:162CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Francis MM, Evans SP, Jensen M, Madsen DM, Mancuso J et al (2005) The Ror receptor tyrosine kinase CAM-1 is required for ACR-16-mediated synaptic transmission at the C. elegans neuromuscular junction. Neuron 46:581–594CrossRefPubMedGoogle Scholar
  16. 16.
    Richmond JE, Jorgensen EM (1999) One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 2:791–797CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Touroutine D, Fox RM, Von Stetina SE, Burdina A, Miller DM et al (2005) acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J Biol Chem 280:27013–27021CrossRefPubMedGoogle Scholar
  18. 18.
    Boulin T, Gielen M, Richmond JE, Williams DC, Paoletti P et al (2008) Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor. Proc Natl Acad Sci U S A 105:18590–18595CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Culetto E, Baylis HA, Richmond JE, Jones AK, Fleming JT et al (2004) The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit. J Biol Chem 279:42476–42483CrossRefPubMedGoogle Scholar
  20. 20.
    Fleming JT, Squire MD, Barnes TM, Tornoe C, Matsuda K et al (1997) Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci 17:5843–5857PubMedGoogle Scholar
  21. 21.
    Lewis JA, Wu CH, Berg H, Levine JH (1980) The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95:905–928PubMedPubMedCentralGoogle Scholar
  22. 22.
    Towers PR, Edwards B, Richmond JE, Sattelle DB (2005) The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. J Neurochem 93:1–9CrossRefPubMedGoogle Scholar
  23. 23.
    Petrash HA, Philbrook A, Haburcak M, Barbagallo B, Francis MM (2013) ACR-12 ionotropic acetylcholine receptor complexes regulate inhibitory motor neuron activity in Caenorhabditis elegans. J Neurosci 33:5524–5532CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Barbagallo B, Prescott HA, Boyle P, Climer J, Francis MM (2010) A dominant mutation in a neuronal acetylcholine receptor subunit leads to motor neuron degeneration in Caenorhabditis elegans. J Neurosci 30:13932–13942CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jospin M, Qi YB, Stawicki TM, Boulin T, Schuske KR et al (2009) A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS Biol 7:e1000265CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nashmi R, Dickinson ME, McKinney S, Jareb M, Labarca C et al (2003) Assembly of alpha4beta2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J Neurosci 23:11554–11567PubMedGoogle Scholar
  27. 27.
    Drenan RM, Nashmi R, Imoukhuede P, Just H, McKinney S et al (2008) Subcellular trafficking, pentameric assembly, and subunit stoichiometry of neuronal nicotinic acetylcholine receptors containing fluorescently labeled alpha6 and beta3 subunits. Mol Pharmacol 73:27–41CrossRefPubMedGoogle Scholar
  28. 28.
    Mackey ED, Engle SE, Kim MR, O'Neill HC, Wageman CR et al (2012) alpha6* nicotinic acetylcholine receptor expression and function in a visual salience circuit. J Neurosci 32:10226–10237CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xiao C, Srinivasan R, Drenan RM, Mackey ED, McIntosh JM et al (2011) Characterizing functional alpha6beta2 nicotinic acetylcholine receptors in vitro: mutant beta2 subunits improve membrane expression, and fluorescent proteins reveal responsive cells. Biochem Pharmacol 82:852–861CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Duerr JS (2013) Antibody staining in C. elegans using “freeze-cracking”. J Vis Exp. 2013 Oct 14;(80). doi:10.3791/50664
  31. 31.
    Wilson KJ, Qadota H, Benian GM (2012) Immunofluorescent localization of proteins in Caenorhabditis elegans muscle. Methods Mol Biol 798:171–181CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gottschalk A, Schafer WR (2006) Visualization of integral and peripheral cell surface proteins in live Caenorhabditis elegans. J Neurosci Methods 154:68–79CrossRefPubMedGoogle Scholar
  33. 33.
    Boulin T et al (2006) Reporter gene fusions, WormBook, ed. The C. elegans Research Community, WormBook, doi: 10.1895/wormbook.1.106.1,
  34. 34.
    Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10:3959–3970PubMedPubMedCentralGoogle Scholar
  35. 35.
    Frokjaer-Jensen C, Davis MW, Sarov M, Taylor J, Flibotte S et al (2014) Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nat Methods 11:529–534CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10:1028–1034CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM et al (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10:741–743CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gendrel M, Rapti G, Richmond JE, Bessereau JL (2009) A secreted complement-control-related protein ensures acetylcholine receptor clustering. Nature 461:992–996CrossRefPubMedGoogle Scholar
  39. 39.
    Robert VJ, Bessereau JL (2011) Genome engineering by transgene-instructed gene conversion in C. elegans. Methods Cell Biol 106:65–88CrossRefPubMedGoogle Scholar
  40. 40.
    Gally C, Eimer S, Richmond JE, Bessereau JL (2004) A transmembrane protein required for acetylcholine receptor clustering in Caenorhabditis elegans. Nature 431:578–582CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pinan-Lucarre B, Tu H, Pierron M, Cruceyra PI, Zhan H et al (2014) C. elegans Punctin specifies cholinergic versus GABAergic identity of postsynaptic domains. Nature 511:466–470CrossRefPubMedGoogle Scholar
  42. 42.
    Rapti G, Richmond J, Bessereau JL (2011) A single immunoglobulin-domain protein required for clustering acetylcholine receptors in C. elegans. EMBO J 30:706–718CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Philbrook A, Barbagallo B, Francis MM (2013) A tale of two receptors: dual roles for ionotropic acetylcholine receptors in regulating motor neuron excitation and inhibition. Worm 2:e25765CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Qi YB, Po MD, Mac P, Kawano T, Jorgensen EM et al (2013) Hyperactivation of B-type motor neurons results in aberrant synchrony of the Caenorhabditis elegans motor circuit. J Neurosci 33:5319–5325CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    He S, Philbrook A, McWhirter R, Gabel CV, Taub DG et al (2015) Transcriptional control of synaptic remodeling through regulated expression of an immunoglobulin superfamily protein. Curr Biol 25:2541–2548CrossRefPubMedGoogle Scholar
  46. 46.
    White JG, Albertson DG, Anness MA (1978) Connectivity changes in a class of motoneurone during the development of a nematode. Nature 271:764–766CrossRefPubMedGoogle Scholar
  47. 47.
    Hallam SJ, Jin Y (1998) lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans. Nature 395:78–82CrossRefPubMedGoogle Scholar
  48. 48.
    Kurup N, Yan D, Goncharov A, Jin Y (2015) Dynamic microtubules drive circuit rewiring in the absence of neurite remodeling. Curr Biol 25:1594–1605CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Park M, Watanabe S, Poon VY, Ou CY, Jorgensen EM et al (2011) CYY-1/cyclin Y and CDK-5 differentially regulate synapse elimination and formation for rewiring neural circuits. Neuron 70:742–757CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Petersen SC, Watson JD, Richmond JE, Sarov M, Walthall WW et al (2011) A transcriptional program promotes remodeling of GABAergic synapses in Caenorhabditis elegans. J Neurosci 31:15362–15375CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Thompson-Peer KL, Bai J, Hu Z, Kaplan JM (2012) HBL-1 patterns synaptic remodeling in C. elegans. Neuron 73:453–465CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Howell K, White JG, Hobert O (2015) Spatiotemporal control of a novel synaptic organizer molecule. Nature 523:83–87CrossRefPubMedGoogle Scholar
  53. 53.
    Labarca C, Schwarz J, Deshpande P, Schwarz S, Nowak MW et al (2001) Point mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety. Proc Natl Acad Sci U S A 98:2786–2791CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P et al (2004) Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 306:1029–1032CrossRefPubMedGoogle Scholar
  55. 55.
    Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C et al (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849CrossRefPubMedGoogle Scholar
  56. 56.
    Labarca C, Nowak MW, Zhang H, Tang L, Deshpande P et al (1995) Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 376:514–516CrossRefPubMedGoogle Scholar
  57. 57.
    Drenan RM, Grady SR, Whiteaker P, McClure-Begley T, McKinney S et al (2008) In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors. Neuron 60:123–136CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bhattacharya R, Touroutine D, Barbagallo B, Climer J, Lambert CM et al (2014) A conserved dopamine-cholecystokinin signaling pathway shapes context-dependent Caenorhabditis elegans behavior. PLoS Genet 10:e1004584CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Evans TC ed (2006) Transformation and microinjection, WormBook, ed. The C. elegans Research Community, WormBook, doi:10.1895/wormbook.1.108.1,
  60. 60.
    Janssen T, Meelkop E, Lindemans M, Verstraelen K, Husson SJ et al (2008) Discovery of a cholecystokinin-gastrin-like signaling system in nematodes. Endocrinology 149:2826–2839CrossRefPubMedGoogle Scholar
  61. 61.
    Janssen T, Meelkop E, Nachman RJ, Schoofs L (2009) Evolutionary conservation of the cholecystokinin/gastrin signaling system in nematodes. Ann N Y Acad Sci 1163:428–432CrossRefPubMedGoogle Scholar
  62. 62.
    Hu Z, Pym EC, Babu K, Vashlishan Murray AB, Kaplan JM (2011) A neuropeptide-mediated stretch response links muscle contraction to changes in neurotransmitter release. Neuron 71:92–102CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Engel AG, Ohno K, Milone M, Wang HL, Nakano S et al (1996) New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow-channel congenital myasthenic syndrome. Hum Mol Genet 5:1217–1227CrossRefPubMedGoogle Scholar
  64. 64.
    Stawicki TM, Zhou K, Yochem J, Chen L, Jin Y (2011) TRPM channels modulate epileptic-like convulsions via systemic ion homeostasis. Curr Biol 21:883–888CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Stawicki TM, Takayanagi-Kiya S, Zhou K, Jin Y (2013) Neuropeptides function in a homeostatic manner to modulate excitation-inhibition imbalance in C. elegans. PLoS Genet 9:e1003472CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hoerndli FJ, Maxfield DA, Brockie PJ, Mellem JE, Jensen E et al (2013) Kinesin-1 regulates synaptic strength by mediating the delivery, removal, and redistribution of AMPA receptors. Neuron 80:1421–1437CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hoerndli FJ, Wang R, Mellem JE, Kallarackal A, Brockie PJ et al (2015) Neuronal activity and CaMKII regulate kinesin-mediated transport of synaptic AMPARs. Neuron 86:457–474CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195CrossRefPubMedGoogle Scholar
  69. 69.
    Richards CI, Srinivasan R, Xiao C, Mackey ED, Miwa JM et al (2011) Trafficking of alpha4* nicotinic receptors revealed by superecliptic phluorin: effects of a beta4 amyotrophic lateral sclerosis-associated mutation and chronic exposure to nicotine. J Biol Chem 286:31241–31249CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations