Proteostasis pp 193-202 | Cite as

Isolation of Ubiquitinated Proteins to High Purity from In Vivo Samples

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1449)

Abstract

Ubiquitination pathways are widely used within eukaryotic cells. The complexity of ubiquitin signaling gives rise to a number of problems in the study of specific pathways. One problem is that not all processes regulated by ubiquitin are shared among the different cells of an organism (e.g., neurotransmitter release is only carried out in neuronal cells). Moreover, these processes are often highly temporally dynamic. It is essential therefore to use the right system for each biological question, so that we can characterize pathways specifically in the tissue or cells of interest. However, low stoichiometry, and the unstable nature of many ubiquitin conjugates, presents a technical barrier to studying this modification in vivo. Here, we describe two approaches to isolate ubiquitinated proteins to high purity. The first one favors isolation of the whole mixture of ubiquitinated material from a given tissue or cell type, generating a survey of the ubiquitome landscape for a specific condition. The second one favors the isolation of just one specific protein, in order to facilitate the characterization of its ubiquitinated fraction. In both cases, highly stringent denaturing buffers are used to minimize the presence of contaminating material in the sample.

Key words

Ubiquitination Substrates Isolation Denaturing conditions 

Notes

Acknowledgments

While this chapter was written by the authors listed above, we would like to acknowledge other lab members who contributed to optimization of these techniques as described: Our thanks therefore to Maribel Franco, James Sutherland, Aitor Martinez, Benoit Lectez, and So Young Lee. We would also like to thank Junmin Peng and Gunnar Dittmar, without whose excellent MS support we would never have confirmed how well our bioUb pulldown strategy was performing. The authors would like to acknowledge networking support by the Proteostasis COST Action (BM1307).

References

  1. 1.
    Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229CrossRefPubMedGoogle Scholar
  2. 2.
    Lopitz-Otsoa F, Rodriguez-Suarez E, Aillet F, Casado-Vela J, Lang V, Matthiesen R et al (2012) Integrative analysis of the ubiquitin proteome isolated using tandem ubiquitin binding entities (TUBEs). J Proteomics 75:2998–3014CrossRefPubMedGoogle Scholar
  3. 3.
    Vasilescu J, Smith JC, Ethier M, Figeys D (2005) Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. J Proteome Res 4:2192–2200CrossRefPubMedGoogle Scholar
  4. 4.
    Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868–873CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926CrossRefPubMedGoogle Scholar
  6. 6.
    Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW et al (2010) The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140:704–716CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Franco M, Seyfried NT, Brand AH, Peng J, Mayor U (2011) A novel strategy to isolate ubiquitin conjugates reveals wide role for ubiquitination during neural development. Mol Cell Proteomics 10, M110.002188Google Scholar
  8. 8.
    Lectez B, Migotti R, Lee SY, Ramirez J, Beraza N, Mansfield B et al (2014) Ubiquitin profiling in liver using a transgenic mouse with biotinylated ubiquitin. J Proteome Res 13:3016–3026CrossRefPubMedGoogle Scholar
  9. 9.
    Min M, Mayor U, Dittmar G, Lindon C (2014) Using in vivo biotinylated ubiquitin to describe a mitotic exit ubiquitome from human cells. Mol Cell Proteomics 13:2411–2425CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Min M, Mayor U, Lindon C (2013) Ubiquitination site preferences in anaphase promoting complex/cyclosome (APC/C) substrates. Open Biol 3:130097CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Min M, Mevissen T, Luca MD, Komander D, Lindon C (2015) Efficient APC/C substrate degradation in cells undergoing mitotic exit depends on K11 ubiquitin linkages. Mol Biol Cell. 26:4325–32Google Scholar
  12. 12.
    Lee SY, Ramirez J, Franco M, Lectez B, Gonzalez M, Barrio R et al (2014) Ube3a, the E3 ubiquitin ligase causing Angelman syndrome and linked to autism, regulates protein homeostasis through the proteasomal shuttle Rpn10. Cell Mol Life Sci 71:2747–2758CrossRefPubMedGoogle Scholar
  13. 13.
    Tsirigotis M, Thurig S, Dubé M, Vanderhyden BC, Zhang M, Gray DA (2001) Analysis of ubiquitination in vivo using a transgenic mouse model. Biotechniques 31:120–126, 128, 130PubMedGoogle Scholar
  14. 14.
    Tirard M, Hsiao H-H, Nikolov M, Urlaub H, Melchior F, Brose N (2012) In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice. Proc Natl Acad Sci U S A 109:21122–21127CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A et al (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44:325–340CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M et al (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10, M111.013284Google Scholar
  17. 17.
    Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP et al (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496:372–376CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wagner SA, Beli P, Weinert BT, Schölz C, Kelstrup CD, Young C et al (2012) Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics 11:1578–1585CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Na CH, Jones DR, Yang Y, Wang X, Xu Y, Peng J (2012) Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. J Proteome Res 11:4722–4732CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Leidecker O, Matic I, Mahata B, Pion E, Xirodimas DP (2012) The ubiquitin E1 enzyme Ube1 mediates NEDD8 activation under diverse stress conditions. Cell Cycle Georget Tex 11:1142–1150CrossRefGoogle Scholar
  21. 21.
    Shi Y, Xu P, Qin J (2010) Ubiquitinated proteome: ready for global? Mol Cell Proteomics 10, R110.006882Google Scholar
  22. 22.
    Williams C, van den Berg M, Sprenger RR, Distel B (2007) A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem 282:22534–22543CrossRefPubMedGoogle Scholar
  23. 23.
    Hensel A, Beck S, Magraoui FE, Platta HW, Girzalsky W, Erdmann R (2011) Cysteine-dependent ubiquitination of Pex18p Is linked to cargo translocation across the peroxisomal membrane. J Biol Chem 286:43495–43505CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wang X, Herr RA, Hansen TH (2012) Ubiquitination of substrates by esterification. Traffic Cph Den 13:19–24CrossRefGoogle Scholar
  25. 25.
    Talamillo A, Herboso L, Pirone L, Pérez C, González M, Sánchez J et al (2013) Scavenger receptors mediate the role of SUMO and Ftz-f1 in Drosophila steroidogenesis. PLoS Genet 9:e1003473CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8:921–929CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Biokimika eta Biologia Molekularra Saila, Zientzia eta Teknologia FakultateaUniversity of the Basque Country (UPV/EHU)LeioaSpain
  2. 2.Department of GeneticsUniversity of CambridgeCambridgeUK
  3. 3.Department of Cell BiologyHarvard Medical SchoolBostonUSA
  4. 4.CIC bioGUNEDerioSpain
  5. 5.Ikerbasque, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations