Assessing the Biological Activity of the Glucan Phosphatase Laforin

  • Carlos Romá-Mateo
  • Madushi Raththagala
  • Mathew S. Gentry
  • Pascual Sanz
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1447)

Abstract

Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin’s unique glycogen phosphatase activity.

Key words

Glycogen Lafora disease Dual-specificity phosphatase 

Notes

Acknowledgments

This study was supported by grants from the Spanish Ministry of Education and Science SAF2014-54604-C3-1-R (P.S.), Generalitat Valenciana (PrometeoII/2014/029) (P.S.), NIH Grants R01NS070899 (M.S.G.), P20GM103486 (M.S.G.), Mizutani Foundation for Glycoscience Award (M.S.G.), and NSF Grant IIA-1355438 (M.S.G.). C.R.-M. was supported by the Saving Lives at Birth Consortium.

References

  1. 1.
    Worby CA, Gentry MS, Dixon JE (2006) Laforin, a dual specificity phosphatase that dephosphorylates complex carbohydrates. J Biol Chem 281(41):30412–30418CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gentry MS, Dowen RH III, Worby CA, Mattoo S, Ecker JR, Dixon JE (2007) The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease. J Cell Biol 178(3):477–488CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, Criado-Garcia O, Fernandez-Sanchez E, Medrano-Fernandez I, Dominguez J, Garcia-Rocha M, Soriano E, Rodriguez de Cordoba S, Guinovart JJ (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10(11):1407–1413CrossRefPubMedGoogle Scholar
  4. 4.
    Solaz-Fuster MC, Gimeno-Alcaniz JV, Ros S, Fernandez-Sanchez ME, Garcia-Fojeda B, Criado Garcia O, Vilchez D, Dominguez J, Garcia-Rocha M, Sanchez-Piris M, Aguado C, Knecht E, Serratosa J, Guinovart JJ, Sanz P, Rodriguez de Cordoba S (2008) Regulation of glycogen synthesis by the laforin-malin complex is modulated by the AMP-activated protein kinase pathway. Hum Mol Genet 17(5):667–678CrossRefPubMedGoogle Scholar
  5. 5.
    Minassian BA, Ianzano L, Meloche M, Andermann E, Rouleau GA, Delgado-Escueta AV, Scherer SW (2000) Mutation spectrum and predicted function of laforin in Lafora’s progressive myoclonus epilepsy. Neurology 55(3):341–346CrossRefPubMedGoogle Scholar
  6. 6.
    Wang J, Stuckey JA, Wishart MJ, Dixon JE (2002) A unique carbohydrate binding domain targets the lafora disease phosphatase to glycogen. J Biol Chem 277(4):2377–2380CrossRefPubMedGoogle Scholar
  7. 7.
    Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev 7(11):833–846CrossRefGoogle Scholar
  8. 8.
    Ganesh S, Tsurutani N, Suzuki T, Ueda K, Agarwala KL, Osada H, Delgado-Escueta AV, Yamakawa K (2003) The Lafora disease gene product laforin interacts with HIRIP5, a phylogenetically conserved protein containing a NifU-like domain. Hum Mol Genet 12(18):2359–2368CrossRefPubMedGoogle Scholar
  9. 9.
    Wang W, Roach PJ (2004) Glycogen and related polysaccharides inhibit the laforin dual-specificity protein phosphatase. Biochem Biophys Res Commun 325(3):726–730CrossRefPubMedGoogle Scholar
  10. 10.
    Girard JM, Le KH, Lederer F (2006) Molecular characterization of laforin, a dual-specificity protein phosphatase implicated in Lafora disease. Biochimie 88(12):1961–1971CrossRefPubMedGoogle Scholar
  11. 11.
    Tagliabracci VS, Turnbull J, Wang W, Girard JM, Zhao X, Skurat AV, Delgado-Escueta AV, Minassian BA, Depaoli-Roach AA, Roach PJ (2007) Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc Natl Acad Sci U S A 104(49):19262–19266CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tagliabracci VS, Girard JM, Segvich D, Meyer C, Turnbull J, Zhao X, Minassian BA, Depaoli-Roach AA, Roach PJ (2008) Abnormal metabolism of glycogen phosphate as a cause for Lafora disease. J Biol Chem 283(49):33816–33825CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Raththagala M, Brewer MK, Parker MW, Sherwood AR, Wong BK, Hsu S, Bridges TM, Paasch BC, Hellman LM, Husodo S, Meekins DA, Taylor AO, Turner BD, Auger KD, Dukhande VV, Chakravarthy S, Sanz P, Woods VL Jr, Li S, Vander Kooi CW, Gentry MS (2015) Structural mechanism of laforin function in glycogen dephosphorylation and lafora disease. Mol Cell 57(2):261–272CrossRefPubMedGoogle Scholar
  14. 14.
    Singh S, Ganesh S (2009) Lafora progressive myoclonus epilepsy: a meta-analysis of reported mutations in the first decade following the discovery of the EPM2A and NHLRC1 genes. Hum Mutat 30(5):715–723CrossRefPubMedGoogle Scholar
  15. 15.
    Gottlin EB, Xu X, Epstein DM, Burke SP, Eckstein JW, Ballou DP, Dixon JE (1996) Kinetic analysis of the catalytic domain of human cdc25B. J Biol Chem 271(44):27445–27449CrossRefPubMedGoogle Scholar
  16. 16.
    Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100(1):95–97CrossRefPubMedGoogle Scholar
  17. 17.
    Harder KW, Owen P, Wong LK, Aebersold R, Clark-Lewis I, Jirik FR (1994) Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase beta (HPTP beta) using synthetic phosphopeptides. Biochem J 298(Pt 2):395–401CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McCain DF, Zhang ZY (2002) Assays for protein-tyrosine phosphatases. Methods Enzymol 345:507–518CrossRefPubMedGoogle Scholar
  19. 19.
    Sherwood AR, Johnson MB, Delgado-Escueta AV, Gentry MS (2013) A bioassay for Lafora disease and laforin glucan phosphatase activity. Clin Biochem 46(18):1869–1876CrossRefPubMedGoogle Scholar
  20. 20.
    Sanchez-Martin P, Raththagala M, Bridges TM, Husodo S, Gentry MS, Sanz P, Roma-Mateo C (2013) Dimerization of the glucan phosphatase laforin requires the participation of cysteine 329. PLoS One 8(7):e69523CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272(2):843–851CrossRefPubMedGoogle Scholar
  22. 22.
    Itaya K, Ui M (1966) A new micromethod for the colorimetric determination of inorganic phosphate. Clin Chim Acta 14(3):361–366CrossRefPubMedGoogle Scholar
  23. 23.
    Meekins DA, Guo HF, Husodo S, Paasch BC, Bridges TM, Santelia D, Kotting O, Vander Kooi CW, Gentry MS (2013) Structure of the Arabidopsis glucan phosphatase like sex four2 reveals a unique mechanism for starch dephosphorylation. Plant Cell 25(6):2302–2314CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Meekins DA, Raththagala M, Husodo S, White CJ, Guo HF, Kotting O, Vander Kooi CW, Gentry MS (2014) Phosphoglucan-bound structure of starch phosphatase Starch Excess4 reveals the mechanism for C6 specificity. Proc Natl Acad Sci U S A 111(20):7272–7277CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sherwood AR, Paasch BC, Worby CA, Gentry MS (2013) A malachite green-based assay to assess glucan phosphatase activity. Anal Biochem 435(1):54–56CrossRefPubMedGoogle Scholar
  26. 26.
    Walton KM, Dixon JE (1993) Protein tyrosine phosphatases. Annu Rev Biochem 62:101–120CrossRefPubMedGoogle Scholar
  27. 27.
    Dukhande VV, Rogers DM, Roma-Mateo C, Donderis J, Marina A, Taylor AO, Sanz P, Gentry MS (2011) Laforin, a dual specificity phosphatase involved in lafora disease, is present mainly as monomeric form with full phosphatase activity. PLoS One 6(8):e24040CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    DePaoli-Roach AA, Contreras CJ, Segvich DM, Heiss C, Ishihara M, Azadi P, Roach PJ (2015) Glycogen phosphomonoester distribution in mouse models of the progressive myoclonic epilepsy, Lafora disease. J Biol Chem 290(2):841–850CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Carlos Romá-Mateo
    • 1
    • 4
  • Madushi Raththagala
    • 2
  • Mathew S. Gentry
    • 2
  • Pascual Sanz
    • 3
    • 4
  1. 1.Department of Physiology, School of Medicine and DentistryUniversity of Valencia and FIHCUV-INCLIVAValenciaSpain
  2. 2.Department of Molecular and Cellular Biochemistry, Center for Structural BiologyUniversity of KentuckyLexingtonUSA
  3. 3.Instituto de Biomedicina de ValenciaCSICValenciaSpain
  4. 4.Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)ValenciaSpain

Personalised recommendations