Global RT-PCR and RT-qPCR Analysis of the mRNA Expression of the Human PTPome

  • Caroline E. Nunes-XavierEmail author
  • Rafael PulidoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1447)


Comprehensive comparative gene expression analysis of the tyrosine phosphatase superfamily members (PTPome) under cell- or tissue-specific growth conditions may help to define their individual and specific role in physiology and disease. Semi-quantitative and quantitative PCR are commonly used methods to analyze and measure gene expression. Here, we describe technical aspects of PTPome mRNA expression analysis by semi-quantitative RT-PCR and quantitative RT-PCR (RT-qPCR). We provide a protocol for each method consisting in reverse transcription followed by PCR using a global platform of specific PTP primers. The chapter includes aspects from primer validation to the setup of the PTPome RT-qPCR platform. Examples are given of PTP-profiling gene expression analysis using a human breast cancer cell line upon long-term or short-term treatment with cell signaling-activation agents.

Key words

Protein tyrosine phosphatase Reverse transcription PCR Real-time quantitative PCR PTPome 



This work was supported in part by grants SAF2009-10226 from Ministerio Ciencia e Innovación (Spain and Fondo Europeo de Desarrollo Regional), SAF2013-48812-R from Ministerio de Economía y Competitividad (Spain), and EU Research Training Network (MRTN-CT-2006-035830).


  1. 1.
    Draghici S, Khatri P, Eklund AC, Szallasi Z (2006) Reliability and reproducibility issues in DNA microarray measurements. Trends Genet 22(2):101–109. doi: 10.1016/j.tig.2005.12.005 CrossRefPubMedGoogle Scholar
  2. 2.
    Katagiri F, Glazebrook J (2009) Overview of mRNA expression profiling using DNA microarrays. Curr Protoc Mol Biol Chapter 22:Unit 22 24. doi: 10.1002/0471142727.mb2204s85
  3. 3.
    Mehta JP (2011) Microarray analysis of mRNAs: experimental design and data analysis fundamentals. Methods Mol Biol 784:27–40. doi: 10.1007/978-1-61779-289-2_3 CrossRefPubMedGoogle Scholar
  4. 4.
    Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L, Stahlberg A, Zoric N (2006) The real-time polymerase chain reaction. Mol Aspects Med 27(2–3):95–125. doi: 10.1016/j.mam.2005.12.007 CrossRefPubMedGoogle Scholar
  5. 5.
    VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44(5):619–626. doi: 10.2144/000112776 CrossRefPubMedGoogle Scholar
  6. 6.
    Marone M, Mozzetti S, De Ritis D, Pierelli L, Scambia G (2001) Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced online 3:19–25. doi: 10.1251/bpo20 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pulido R, Krueger NX, Serra-Pages C, Saito H, Streuli M (1995) Molecular characterization of the human transmembrane protein-tyrosine phosphatase delta. Evidence for tissue-specific expression of alternative human transmembrane protein-tyrosine phosphatase delta isoforms. J Biol Chem 270(12):6722–6728CrossRefPubMedGoogle Scholar
  8. 8.
    Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711. doi: 10.1016/j.cell.2004.05.018 CrossRefPubMedGoogle Scholar
  9. 9.
    Alonso A, Pulido R (2015) The extended human PTPome: a growing tyrosine phosphatase family. FEBS J. doi: 10.1111/febs.13600 PubMedGoogle Scholar
  10. 10.
    Andersen JN, Jansen PG, Echwald SM, Mortensen OH, Fukada T, Del Vecchio R, Tonks NK, Moller NP (2004) A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J 18(1):8–30. doi: 10.1096/fj.02-1212rev CrossRefPubMedGoogle Scholar
  11. 11.
    Bhaduri A, Sowdhamini R (2003) A genome-wide survey of human tyrosine phosphatases. Protein Eng 16(12):881–888. doi: 10.1093/protein/gzg144 CrossRefPubMedGoogle Scholar
  12. 12.
    Hatzihristidis T, Liu S, Pryszcz L, Hutchins AP, Gabaldon T, Tremblay ML, Miranda-Saavedra D (2014) PTP-central: a comprehensive resource of protein tyrosine phosphatases in eukaryotic genomes. Methods 65(2):156–164. doi: 10.1016/j.ymeth.2013.07.031 CrossRefPubMedGoogle Scholar
  13. 13.
    Li X, Wilmanns M, Thornton J, Kohn M (2013) Elucidating human phosphatase-substrate networks. Sci Signal 6(275):rs10. doi: 10.1126/scisignal.2003203 CrossRefPubMedGoogle Scholar
  14. 14.
    Patterson KI, Brummer T, O’Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418(3):475–489CrossRefPubMedGoogle Scholar
  15. 15.
    Sadatomi D, Tanimura S, Ozaki K, Takeda K (2013) Atypical protein phosphatases: emerging players in cellular signaling. Int J Mol Sci 14(3):4596–4612. doi: 10.3390/ijms14034596 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tautz L, Critton DA, Grotegut S (2013) Protein tyrosine phosphatases: structure, function, and implication in human disease. Methods Mol Biol 1053:179–221. doi: 10.1007/978-1-62703-562-0_13 CrossRefPubMedGoogle Scholar
  17. 17.
    Nunes-Xavier C, Roma-Mateo C, Rios P, Tarrega C, Cejudo-Marin R, Tabernero L, Pulido R (2011) Dual-specificity MAP kinase phosphatases as targets of cancer treatment. Anticancer Agents Med Chem 11(1):109–132CrossRefPubMedGoogle Scholar
  18. 18.
    Rios P, Nunes-Xavier CE, Tabernero L, Kohn M, Pulido R (2014) Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid Redox Signal 20(14):2251–2273. doi: 10.1089/ars.2013.5709 CrossRefPubMedGoogle Scholar
  19. 19.
    Arora D, Kothe S, van den Eijnden M, Hooft van Huijsduijnen R, Heidel F, Fischer T, Scholl S, Tolle B, Bohmer SA, Lennartsson J, Isken F, Muller-Tidow C, Bohmer FD (2012) Expression of protein-tyrosine phosphatases in Acute Myeloid Leukemia cells: FLT3 ITD sustains high levels of DUSP6 expression. Cell Commun Signal 10(1):19. doi: 10.1186/1478-811X-10-19 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nunes-Xavier CE, Elson A, Pulido R (2012) Epidermal growth factor receptor (EGFR)-mediated positive feedback of protein-tyrosine phosphatase epsilon (PTPepsilon) on ERK1/2 and AKT protein pathways is required for survival of human breast cancer cells. J Biol Chem 287(5):3433–3444. doi: 10.1074/jbc.M111.293928 CrossRefPubMedGoogle Scholar
  21. 21.
    Nunes-Xavier CE, Tarrega C, Cejudo-Marin R, Frijhoff J, Sandin A, Ostman A, Pulido R (2010) Differential up-regulation of MAP kinase phosphatases MKP3/DUSP6 and DUSP5 by Ets2 and c-Jun converge in the control of the growth arrest versus proliferation response of MCF-7 breast cancer cells to phorbol ester. J Biol Chem 285(34):26417–26430. doi: 10.1074/jbc.M110.121830, M110.121830 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pulido R, Serra-Pages C, Tang M, Streuli M (1995) The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1. Proc Natl Acad Sci U S A 92(25):11686–11690CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schmidt F, van den Eijnden M, Pescini Gobert R, Saborio GP, Carboni S, Alliod C, Pouly S, Staugaitis SM, Dutta R, Trapp B, Hooft van Huijsduijnen R (2012) Identification of VHY/Dusp15 as a regulator of oligodendrocyte differentiation through a systematic genomics approach. PLoS One 7(7):e40457. doi: 10.1371/journal.pone.0040457 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Erdmann KS, Kuhlmann J, Lessmann V, Herrmann L, Eulenburg V, Muller O, Heumann R (2000) The Adenomatous Polyposis Coli-protein (APC) interacts with the protein tyrosine phosphatase PTP-BL via an alternatively spliced PDZ domain. Oncogene 19(34):3894–3901. doi: 10.1038/sj.onc.1203725 CrossRefPubMedGoogle Scholar
  25. 25.
    Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods 50(4):S1–S5. doi: 10.1016/j.ymeth.2010.01.005 CrossRefPubMedGoogle Scholar
  26. 26.
    Ruan W, Lai M (2007) Actin, a reliable marker of internal control? Clin Chim Acta 385(1–2):1–5. doi: 10.1016/j.cca.2007.07.003 CrossRefPubMedGoogle Scholar
  27. 27.
    Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46(1–2):69–81CrossRefPubMedGoogle Scholar
  28. 28.
    Sturzenbaum SR, Kille P (2001) Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Physiol B Biochem Mol Biol 130(3):281–289CrossRefPubMedGoogle Scholar
  29. 29.
    Hellemans J, Vandesompele J (2014) Selection of reliable reference genes for RT-qPCR analysis. Methods Mol Biol 1160:19–26. doi: 10.1007/978-1-4939-0733-5_3 CrossRefPubMedGoogle Scholar
  30. 30.
    Petersen K, Oyan AM, Rostad K, Olsen S, Bo TH, Salvesen HB, Gjertsen BT, Bruserud O, Halvorsen OJ, Akslen LA, Steen VM, Jonassen I, Kalland KH (2007) Comparison of nucleic acid targets prepared from total RNA or poly(A) RNA for DNA oligonucleotide microarray hybridization. Anal Biochem 366(1):46–58. doi: 10.1016/j.ab.2007.03.013 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Centro de Investigación Príncipe FelipeValenciaSpain
  2. 2.Department of Tumor Biology, Institute for Cancer ResearchOslo University Hospital RadiumhospitaletOsloNorway
  3. 3.Biocruces Health Research InstituteBarakaldoSpain
  4. 4.IKERBASQUEBasque Foundation for ScienceBilbaoSpain

Personalised recommendations