The Extended Family of Protein Tyrosine Phosphatases

  • Andrés AlonsoEmail author
  • Caroline E. Nunes-Xavier
  • Yolanda Bayón
  • Rafael PulidoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1447)


In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented.

Key words

Tyrosine phosphatase Lipid phosphatase Asp-phosphatase His-based phosphatase Phosphorylation Dephosphorylation 



The work in RP laboratory is supported in part by grants SAF2013-48812-R from Ministerio de Economía y Competitividad (Spain), 2013111011 from Gobierno Vasco, Departamento de Salud (Basque Country, Spain), and BIO13/CI/001/BC from BIOEF/EITB maratoia (Basque Country, Spain).


  1. 1.
    Tonks NK (2013) Protein tyrosine phosphatases—from housekeeping enzymes to master regulators of signal transduction. FEBS J 280:346–378PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hunter T (2014) The genesis of tyrosine phosphorylation. Cold Spring Harb Perspect Biol 6:a020644PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711PubMedCrossRefGoogle Scholar
  4. 4.
    Andersen JN, Jansen PG, Echwald SM, Mortensen OH, Fukada T, Del Vecchio R, Tonks NK, Moller NP (2004) A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB J 18:8–30PubMedCrossRefGoogle Scholar
  5. 5.
    Li X, Wilmanns M, Thornton J, Kohn M (2013) Elucidating human phosphatase-substrate networks. Sci Signal 6:rs10PubMedCrossRefGoogle Scholar
  6. 6.
    Hatzihristidis T, Liu S, Pryszcz L, Hutchins AP, Gabaldon T, Tremblay ML, Miranda-Saavedra D (2014) PTP-central: a comprehensive resource of protein tyrosine phosphatases in eukaryotic genomes. Methods (San Diego, Calif) 65:156–164CrossRefGoogle Scholar
  7. 7.
    Tautz L, Critton DA, Grotegut S (2013) Protein tyrosine phosphatases: structure, function, and implication in human disease. Methods Mol Biol (Clifton, NJ) 1053:179–221CrossRefGoogle Scholar
  8. 8.
    Alonso A, Pulido R (2016) The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 283:1404–1429Google Scholar
  9. 9.
    Charbonneau H, Tonks NK, Walsh KA, Fischer EH (1988) The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase. Proc Natl Acad Sci U S A 85:7182–7186PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mustelin T, Coggeshall KM, Altman A (1989) Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc Natl Acad Sci U S A 86:|6302–6306PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ostergaard HL, Shackelford DA, Hurley TR, Johnson P, Hyman R, Sefton BM, Trowbridge IS (1989) Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc Natl Acad Sci U S A 86:8959–8963PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zheng XM, Wang Y, Pallen CJ (1992) Cell transformation and activation of pp60c-src by overexpression of a protein tyrosine phosphatase. Nature 359:336–339PubMedCrossRefGoogle Scholar
  13. 13.
    Roskoski R Jr (2005) Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 331:1–14PubMedCrossRefGoogle Scholar
  14. 14.
    Pulido R, Zuniga A, Ullrich A (1998) PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J 17:7337–7350PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Saxena M, Williams S, Brockdorff J, Gilman J, Mustelin T (1999) Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP). J Biol Chem 274:11693–11700PubMedCrossRefGoogle Scholar
  16. 16.
    Fan G, Aleem S, Yang M, Miller WT, Tonks NK (2015) Protein tyrosine phosphatase and kinase specificity in regulation of SRC and BRK. J Biol Chem 290(26):15934–15947PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Moller NP (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21:7117–7136PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Muller S, Knapp S (2009) Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 136:352–363PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ahuja LG, Gopal B (2014) Bi-domain protein tyrosine phosphatases reveal an evolutionary adaptation to optimize signal transduction. Antioxid Redox Signal 20:2141–2159PubMedCrossRefGoogle Scholar
  20. 20.
    Mohebiany AN, Nikolaienko RM, Bouyain S, Harroch S (2013) Receptor-type tyrosine phosphatase ligands: looking for the needle in the haystack. FEBS J 280:388–400PubMedCrossRefGoogle Scholar
  21. 21.
    Craig SE, Brady-Kalnay SM (2015) Regulation of development and cancer by the R2B subfamily of RPTPs and the implications of proteolysis. Semin Cell Dev Biol 37:108–118PubMedCrossRefGoogle Scholar
  22. 22.
    Takahashi H, Craig AM (2013) Protein tyrosine phosphatases PTPdelta, PTPsigma, and LAR: presynaptic hubs for synapse organization. Trends Neurosci 36:522–534PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Um JW, Ko J (2013) LAR-RPTPs: synaptic adhesion molecules that shape synapse development. Trends Cell Biol 23:465–475PubMedCrossRefGoogle Scholar
  24. 24.
    Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, Parfitt K, Marcu O, Heslip TR, Marsh JL, Schwarz TL, Flanagan JG, Van Vactor D (2006) The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 49:517–531PubMedCrossRefGoogle Scholar
  25. 25.
    Walzel H, Schulz U, Neels P, Brock J (1999) Galectin-1, a natural ligand for the receptor-type protein tyrosine phosphatase CD45. Immunol Lett 67:193–202PubMedCrossRefGoogle Scholar
  26. 26.
    Earl LA, Bi S, Baum LG (2010) N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. J Biol Chem 285:2232–2244PubMedCrossRefGoogle Scholar
  27. 27.
    Clark MC, Pang M, Hsu DK, Liu FT, de Vos S, Gascoyne RD, Said J, Baum LG (2012) Galectin-3 binds to CD45 on diffuse large B-cell lymphoma cells to regulate susceptibility to cell death. Blood 120:4635–4644PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M, Deuel TF (2000) Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci U S A 97:2603–2608PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Perez-Pinera P, Zhang W, Chang Y, Vega JA, Deuel TF (2007) Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase beta/zeta signaling pathway: an alternative mechanism of receptor tyrosine kinase activation. J Biol Chem 282:28683–28690PubMedCrossRefGoogle Scholar
  30. 30.
    Marcos T, Ruiz-Martin V, de la Puerta ML, Trinidad AG, Rodriguez Mdel C, de la Fuente MA, Sanchez Crespo M, Alonso A, Bayon Y (2014) Proline-serine-threonine phosphatase interacting protein 1 inhibition of T-cell receptor signaling depends on its SH3 domain. FEBS J 281:3844–3854PubMedCrossRefGoogle Scholar
  31. 31.
    Veillette A, Rhee I, Souza CM, Davidson D (2009) PEST family phosphatases in immunity, autoimmunity, and autoinflammatory disorders. Immunol Rev 228:312–324PubMedCrossRefGoogle Scholar
  32. 32.
    Guan KL, Broyles SS, Dixon JE (1991) A Tyr/Ser protein phosphatase encoded by vaccinia virus. Nature 350:359–362PubMedCrossRefGoogle Scholar
  33. 33.
    Nunes-Xavier C, Roma-Mateo C, Rios P, Tarrega C, Cejudo-Marin R, Tabernero L, Pulido R (2011) Dual-specificity MAP kinase phosphatases as targets of cancer treatment. Anticancer Agents Med Chem 11:109–132PubMedCrossRefGoogle Scholar
  34. 34.
    Caunt CJ, Keyse SM (2013) Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J 280:489–504PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hnia K, Vaccari I, Bolino A, Laporte J (2012) Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology. Trends Mol Med 18:317–327PubMedCrossRefGoogle Scholar
  36. 36.
    Pulido R, Stoker AW, Hendriks WJ (2013) PTPs emerge as PIPs: protein tyrosine phosphatases with lipid-phosphatase activities in human disease. Hum Mol Genet 22:R66–R76PubMedCrossRefGoogle Scholar
  37. 37.
    Alonso A, Burkhalter S, Sasin J, Tautz L, Bogetz J, Huynh H, Bremer MC, Holsinger LJ, Godzik A, Mustelin T (2004) The minimal essential core of a cysteine-based protein-tyrosine phosphatase revealed by a novel 16-kDa VH1-like phosphatase, VHZ. J Biol Chem 279:35768–35774PubMedCrossRefGoogle Scholar
  38. 38.
    Todd JL, Tanner KG, Denu JM (1999) Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway. J Biol Chem 274:13271–13280PubMedCrossRefGoogle Scholar
  39. 39.
    Alonso A, Saxena M, Williams S, Mustelin T (2001) Inhibitory role for dual specificity phosphatase VHR in T cell antigen receptor and CD28-induced Erk and Jnk activation. J Biol Chem 276:4766–4771PubMedCrossRefGoogle Scholar
  40. 40.
    Manford A, Xia T, Saxena AK, Stefan C, Hu F, Emr SD, Mao Y (2010) Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO J 29:1489–1498PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A (2009) Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 48:307–343PubMedCrossRefGoogle Scholar
  42. 42.
    Hughes WE, Cooke FT, Parker PJ (2000) Sac phosphatase domain proteins. Biochem J 350(Pt 2):337–352PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA (2012) Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 58:215–279PubMedCrossRefGoogle Scholar
  44. 44.
    Hsu F, Mao Y (2015) The structure of phosphoinositide phosphatases: insights into substrate specificity and catalysis. Biochim Biophys Acta 1851:698–710PubMedCrossRefGoogle Scholar
  45. 45.
    Huang SM, Hancock MK, Pitman JL, Orth AP, Gekakis N (2009) Negative regulators of insulin signaling revealed in a genome-wide functional screen. PLoS One 4:e6871PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mullaney EJ, Ullah AH (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312:179–184PubMedCrossRefGoogle Scholar
  47. 47.
    Puhl AA, Gruninger RJ, Greiner R, Janzen TW, Mosimann SC, Selinger LB (2007) Kinetic and structural analysis of a bacterial protein tyrosine phosphatase-like myo-inositol polyphosphatase. Protein Sci 16:1368–1378PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Huang H, Zhang R, Fu D, Luo J, Li Z, Luo H, Shi P, Yang P, Diao Q, Yao B (2011) Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation. Environ Microbiol 13:747–757PubMedCrossRefGoogle Scholar
  49. 49.
    Chu HM, Guo RT, Lin TW, Chou CC, Shr HL, Lai HL, Tang TY, Cheng KJ, Selinger BL, Wang AH (2004) Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Structure 12:2015–2024PubMedCrossRefGoogle Scholar
  50. 50.
    Adams MS, Gammill LS, Bronner-Fraser M (2008) Discovery of transcription factors and other candidate regulators of neural crest development. Dev Dyn 237:1021–1033PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gammill LS, Bronner-Fraser M (2002) Genomic analysis of neural crest induction. Development 129:5731–5741PubMedCrossRefGoogle Scholar
  52. 52.
    Roffers-Agarwal J, Hutt KJ, Gammill LS (2012) Paladin is an antiphosphatase that regulates neural crest cell formation and migration. Dev Biol 371:180–190PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wallgard E, Nitzsche A, Larsson J, Guo X, Dieterich LC, Dimberg A, Olofsson T, Ponten FC, Makinen T, Kalen M, Hellstrom M (2012) Paladin (X99384) is expressed in the vasculature and shifts from endothelial to vascular smooth muscle cells during mouse development. Dev Dyn 241:770–786PubMedCrossRefGoogle Scholar
  54. 54.
    Ivetac I, Munday AD, Kisseleva MV, Zhang XM, Luff S, Tiganis T, Whisstock JC, Rowe T, Majerus PW, Mitchell CA (2005) The type Ialpha inositol polyphosphate 4-phosphatase generates and terminates phosphoinositide 3-kinase signals on endosomes and the plasma membrane. Mol Biol Cell 16:2218–2233PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Barnache S, Le Scolan E, Kosmider O, Denis N, Moreau-Gachelin F (2006) Phosphati-dylinositol 4-phosphatase type II is an erythropoietin-responsive gene. Oncogene 25:|1420–1423Google Scholar
  56. 56.
    Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D, Barretina J, Lin WM, Rameh L, Salmena L, Pandolfi PP, Cantley LC (2009) Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16:115–125PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Nystuen A, Legare ME, Shultz LD, Frankel WN (2001) A null mutation in inositol polyphosphate 4-phosphatase type I causes selective neuronal loss in weeble mutant mice. Neuron 32:203–212PubMedCrossRefGoogle Scholar
  58. 58.
    Sasaki J, Kofuji S, Itoh R, Momiyama T, Takayama K, Murakami H, Chida S, Tsuya Y, Takasuga S, Eguchi S, Asanuma K, Horie Y, Miura K, Davies EM, Mitchell C, Yamazaki M, Hirai H, Takenawa T, Suzuki A, Sasaki T (2010) The PtdIns(3,4)P(2) phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Nature 465:497–501PubMedCrossRefGoogle Scholar
  59. 59.
    Sharma M, Batra J, Mabalirajan U, Sharma S, Nagarkatti R, Aich J, Sharma SK, Niphadkar PV, Ghosh B (2008) A genetic variation in inositol polyphosphate 4 phosphatase a enhances susceptibility to asthma. Am J Respir Crit Care Med 177:712–719PubMedCrossRefGoogle Scholar
  60. 60.
    Marjanovic J, Wilson MP, Zhang C, Zou J, Nicholas P, Majerus PW (2011) The role of inositol polyphosphate 4-phosphatase 1 in platelet function using a weeble mouse model. Adv Enzyme Regul 51:101–105PubMedCrossRefGoogle Scholar
  61. 61.
    Aich J, Mabalirajan U, Ahmad T, Agrawal A, Ghosh B (2012) Loss-of-function of inositol polyphosphate-4-phosphatase reversibly increases the severity of allergic airway inflammation. Nat Commun 3:877PubMedCrossRefGoogle Scholar
  62. 62.
    Agoulnik IU, Hodgson MC, Bowden WA, Ittmann MM (2011) INPP4B: the new kid on the PI3K block. Oncotarget 2:321–328PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hodgson MC, Deryugina EI, Suarez E, Lopez SM, Lin D, Xue H, Gorlov IP, Wang Y, Agoulnik IU (2014) INPP4B suppresses prostate cancer cell invasion. Cell Commun Signal 12:61PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Chew CL, Lunardi A, Gulluni F, Ruan DT, Chen M, Salmena LPD, Nishino M, Papa A, Ng C, Fung J, Clohessy JG, Sasaki J, Sasaki T, Bronson RT, Hirsch E, Pandolfi PP (2015) In vivo role of INPP4B in tumor and metastasis suppression through regulation of PI3K/AKT signaling at endosomes. Cancer Discov 5(7):740–751PubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kofuji S, Kimura H, Nakanishi H, Nanjo H, Takasuga S, Liu H, Eguchi S, Nakamura R, Itoh R, Ueno N, Asanuma K, Huang M, Koizumi A, Habuchi T, Yamazaki M, Suzuki A, Sasaki J, Sasaki T (2015) INPP4B is a PtdIns(3,4,5)P3 phosphatase that can act as a tumor suppressor. Cancer Discov 5(7):730–739PubMedCrossRefGoogle Scholar
  66. 66.
    Ferron M, Boudiffa M, Arsenault M, Rached M, Pata M, Giroux S, Elfassihi L, Kisseleva M, Majerus PW, Rousseau F, Vacher J (2011) Inositol polyphosphate 4-phosphatase B as a regulator of bone mass in mice and humans. Cell Metab 14:466–477PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ungewickell A, Hugge C, Kisseleva M, Chang SC, Zou J, Feng Y, Galyov EE, Wilson M, Majerus PW (2005) The identification and characterization of two phosphatidylinositol-4,5-bisphosphate 4-phosphatases. Proc Natl Acad Sci U S A 102:18854–18859PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zou J, Marjanovic J, Kisseleva MV, Wilson M, Majerus PW (2007) Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis. Proc Natl Acad Sci U S A 104:16834–16839PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Xiang K, Nagaike T, Xiang S, Kilic T, Beh MM, Manley JL, Tong L (2010) Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 467:729–733PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Souza AC, Azoubel S, Queiroz KC, Peppelenbosch MP, Ferreira CV (2009) From immune response to cancer: a spot on the low molecular weight protein tyrosine phosphatase. Cell Mol Life Sci 66:1140–1153PubMedCrossRefGoogle Scholar
  71. 71.
    Alho I, Costa L, Bicho M, Coelho C (2013) The role of low-molecular-weight protein tyrosine phosphatase (LMW-PTP ACP1) in oncogenesis. Tumour Biol 34:1979–1989PubMedCrossRefGoogle Scholar
  72. 72.
    Zegers I, Martins JC, Willem R, Wyns L, Messens J (2001) Arsenate reductase from S. aureus plasmid pI258 is a phosphatase drafted for redox duty. Nat Struct Biol 8:843–847PubMedCrossRefGoogle Scholar
  73. 73.
    Bennett MS, Guan Z, Laurberg M, Su XD (2001) Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases. Proc Natl Acad Sci U S A 98:13577–13582PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Xiang K, Manley JL, Tong L (2012) An unexpected binding mode for a Pol II CTD peptide phosphorylated at Ser7 in the active site of the CTD phosphatase Ssu72. Genes Dev 26:2265–2270PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Krishnamurthy S, He X, Reyes-Reyes M, Moore C, Hampsey M (2004) Ssu72 Is an RNA polymerase II CTD phosphatase. Mol Cell 14:387–394PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang DW, Mosley AL, Ramisetty SR, Rodriguez-Molina JB, Washburn MP, Ansari AZ (2012) Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J Biol Chem 287:8541–8551PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kim HS, Baek KH, Ha GH, Lee JC, Kim YN, Lee J, Park HY, Lee NR, Lee H, Cho Y, Lee CW (2010) The hsSsu72 phosphatase is a cohesin-binding protein that regulates the resolution of sister chromatid arm cohesion. EMBO J 29:3544–3557PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Kim HS, Kim SH, Park HY, Lee J, Yoon JH, Choi S, Ryu SH, Lee H, Cho HS, Lee CW (2013) Functional interplay between Aurora B kinase and Ssu72 phosphatase regulates sister chromatid cohesion. Nat Commun 4:2631PubMedGoogle Scholar
  79. 79.
    Boutros R, Lobjois V, Ducommun B (2007) CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 7:495–507PubMedCrossRefGoogle Scholar
  80. 80.
    Boutros R, Dozier C, Ducommun B (2006) The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 18:185–191PubMedCrossRefGoogle Scholar
  81. 81.
    Reynolds RA, Yem AW, Wolfe CL, Deibel MR Jr, Chidester CG, Watenpaugh KD (1999) Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle. J Mol Biol 293:559–568PubMedCrossRefGoogle Scholar
  82. 82.
    Fauman EB, Cogswell JP, Lovejoy B, Rocque WJ, Holmes W, Montana VG, Piwnica-Worms H, Rink MJ, Saper MA (1998) Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell 93:617–625PubMedCrossRefGoogle Scholar
  83. 83.
    Ploegman JH, Drent G, Kalk KH, Hol WG, Heinrikson RL, Keim P, Weng L, Russell J (1978) The covalent and tertiary structure of bovine liver rhodanese. Nature 273:124–129PubMedCrossRefGoogle Scholar
  84. 84.
    Bordo D, Bork P (2002) The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep 3:741–746PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Tanoue T, Nishida E (2003) Molecular recognitions in the MAP kinase cascades. Cell Signal 15:455–462PubMedCrossRefGoogle Scholar
  86. 86.
    Cipollone R, Ascenzi P, Visca P (2007) Common themes and variations in the rhodanese superfamily. IUBMB Life 59:51–59PubMedCrossRefGoogle Scholar
  87. 87.
    Rudolph J (2002) Catalytic mechanism of Cdc25. Biochemistry 41:14613–14623PubMedCrossRefGoogle Scholar
  88. 88.
    Arantes GM (2008) The catalytic acid in the dephosphorylation of the Cdk2-pTpY/CycA protein complex by Cdc25B phosphatase. J Phys Chem 112:15244–15247CrossRefGoogle Scholar
  89. 89.
    Patterson KI, Brummer T, O’Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489PubMedCrossRefGoogle Scholar
  90. 90.
    Tadjuidje E, Hegde RS (2013) The Eyes Absent proteins in development and disease. Cell Mol Life Sci 70:1897–1913PubMedCrossRefGoogle Scholar
  91. 91.
    Xu PX, Woo I, Her H, Beier DR, Maas RL (1997) Mouse Eya homologues of the Drosophila eyes absent gene require Pax6 for expression in lens and nasal placode. Development 124:219–231PubMedGoogle Scholar
  92. 92.
    Ohto H, Kamada S, Tago K, Tominaga SI, Ozaki H, Sato S, Kawakami K (1999) Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Mol Cell Biol 19:6815–6824PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426:247–254PubMedCrossRefGoogle Scholar
  94. 94.
    Rayapureddi JP, Kattamuri C, Steinmetz BD, Frankfort BJ, Ostrin EJ, Mardon G, Hegde RS (2003) Eyes absent represents a class of protein tyrosine phosphatases. Nature 426:295–298PubMedCrossRefGoogle Scholar
  95. 95.
    Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, Selengut JD, Parlikar BE, Rebay I (2003) The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature 426:299–302PubMedCrossRefGoogle Scholar
  96. 96.
    Okabe Y, Sano T, Nagata S (2009) Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature 460:520–524PubMedGoogle Scholar
  97. 97.
    Sano T, Nagata S (2011) Characterization of the threonine-phosphatase of mouse eyes absent 3. FEBS Lett 585:2714–2719PubMedCrossRefGoogle Scholar
  98. 98.
    Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458:591–596PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Krishnan N, Jeong DG, Jung SK, Ryu SE, Xiao A, Allis CD, Kim SJ, Tonks NK (2009) Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase eyes absent. J Biol Chem 284(24):16066–16070PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Rigden DJ (2008) The histidine phosphatase superfamily: structure and function. Biochem J 409:333–348PubMedCrossRefGoogle Scholar
  101. 101.
    Kowanetz K, Crosetto N, Haglund K, Schmidt MH, Heldin CH, Dikic I (2004) Suppressors of T-cell receptor signaling Sts-1 and Sts-2 bind to Cbl and inhibit endocytosis of receptor tyrosine kinases. J Biol Chem 279:32786–32795PubMedCrossRefGoogle Scholar
  102. 102.
    Carpino N, Kobayashi R, Zang H, Takahashi Y, Jou ST, Feng J, Nakajima H, Ihle JN (2002) Identification, cDNA cloning, and targeted deletion of p70, a novel, ubiquitously expressed SH3 domain-containing protein. Mol Cell Biol 22:7491–7500PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Feshchenko EA, Smirnova EV, Swaminathan G, Teckchandani AM, Agrawal R, Band H, Zhang X, Annan RS, Carr SA, Tsygankov AY (2004) TULA: an SH3- and UBA-containing protein that binds to c-Cbl and ubiquitin. Oncogene 23:4690–4706PubMedCrossRefGoogle Scholar
  104. 104.
    Wattenhofer M, Shibuya K, Kudoh J, Lyle R, Michaud J, Rossier C, Kawasaki K, Asakawa S, Minoshima S, Berry A, Bonne-Tamir B, Shimizu N, Antonarakis SE, Scott HS (2001) Isolation and characterization of the UBASH3A gene on 21q22.3 encoding a potential nuclear protein with a novel combination of domains. Hum Genet 108:140–147PubMedCrossRefGoogle Scholar
  105. 105.
    Hoeller D, Crosetto N, Blagoev B, Raiborg C, Tikkanen R, Wagner S, Kowanetz K, Breitling R, Mann M, Stenmark H, Dikic I (2006) Regulation of ubiquitin-binding proteins by monoubiquitination. Nat Cell Biol 8:163–169PubMedCrossRefGoogle Scholar
  106. 106.
    Carpino N, Turner S, Mekala D, Takahashi Y, Zang H, Geiger TL, Doherty P, Ihle JN (2004) Regulation of ZAP-70 activation and TCR signaling by two related proteins, Sts-1 and Sts-2. Immunity 20:37–46PubMedCrossRefGoogle Scholar
  107. 107.
    Mikhailik A, Ford B, Keller J, Chen Y, Nassar N, Carpino N (2007) A phosphatase activity of Sts-1 contributes to the suppression of TCR signaling. Mol Cell 27:486–497PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Agrawal R, Carpino N, Tsygankov A (2008) TULA proteins regulate activity of the protein tyrosine kinase Syk. J Cell Biochem 104:953–964PubMedCrossRefGoogle Scholar
  109. 109.
    San Luis B, Sondgeroth B, Nassar N, Carpino N (2011) Sts-2 is a phosphatase that negatively regulates zeta-associated protein (ZAP)-70 and T cell receptor signaling pathways. J Biol Chem 286:15943–15954PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Thomas DH, Getz TM, Newman TN, Dangelmaier CA, Carpino N, Kunapuli SP, Tsygankov AY, Daniel JL (2010) A novel histidine tyrosine phosphatase, TULA-2, associates with Syk and negatively regulates GPVI signaling in platelets. Blood 116:2570–2578PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Chen X, Ren L, Kim S, Carpino N, Daniel JL, Kunapuli SP, Tsygankov AY, Pei D (2010) Determination of the substrate specificity of protein-tyrosine phosphatase TULA-2 and identification of Syk as a TULA-2 substrate. J Biol Chem 285:31268–31276PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Raguz J, Wagner S, Dikic I, Hoeller D (2007) Suppressor of T-cell receptor signalling 1 and 2 differentially regulate endocytosis and signalling of receptor tyrosine kinases. FEBS Lett 581:4767–4772PubMedCrossRefGoogle Scholar
  113. 113.
    Tsygankov AY (2013) TULA-family proteins: a new class of cellular regulators. J Cell Physiol 228:43–49PubMedCrossRefGoogle Scholar
  114. 114.
    Lee ST, Feng M, Wei Y, Li Z, Qiao Y, Guan P, Jiang X, Wong CH, Huynh K, Wang J, Li J, Karuturi KM, Tan EY, Hoon DS, Kang Y, Yu Q (2013) Protein tyrosine phosphatase UBASH3B is overexpressed in triple-negative breast cancer and promotes invasion and metastasis. Proc Natl Acad Sci U S A 110:11121–11126PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Veeramani S, Lee MS, Lin MF (2009) Revisiting histidine-dependent acid phosphatases: a distinct group of tyrosine phosphatases. Trends Biochem Sci 34:273–278PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Veeramani S, Yuan TC, Chen SJ, Lin FF, Petersen JE, Shaheduzzaman S, Srivastava S, MacDonald RG, Lin MF (2005) Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocr Relat Cancer 12:805–822PubMedCrossRefGoogle Scholar
  117. 117.
    Chuang TD, Chen SJ, Lin FF, Veeramani S, Kumar S, Batra SK, Tu Y, Lin MF (2010) Human prostatic acid phosphatase, an authentic tyrosine phosphatase, dephosphorylates ErbB-2 and regulates prostate cancer cell growth. J Biol Chem 285:23598–23606PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Fleisig H, El-Din El-Husseini A, Vincent SR (2004) Regulation of ErbB4 phosphorylation and cleavage by a novel histidine acid phosphatase. Neuroscience 127:91–100PubMedCrossRefGoogle Scholar
  119. 119.
    Muniyan S, Ingersoll MA, Batra SK, Lin MF (2014) Cellular prostatic acid phosphatase, a PTEN-functional homologue in prostate epithelia, functions as a prostate-specific tumor suppressor. Biochim Biophys Acta 1846:88–98PubMedPubMedCentralGoogle Scholar
  120. 120.
    Quintero IB, Herrala AM, Araujo CL, Pulkka AE, Hautaniemi S, Ovaska K, Pryazhnikov E, Kulesskiy E, Ruuth MK, Soini Y, Sormunen RT, Khirug L, Vihko PT (2013) Transmembrane prostatic acid phosphatase (TMPAP) interacts with snapin and deficient mice develop prostate adenocarcinoma. PLoS One 8:e73072PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Seifried A, Schultz J, Gohla A (2013) Human HAD phosphatases: structure, mechanism, and roles in health and disease. FEBS J 280:549–571PubMedCrossRefGoogle Scholar
  122. 122.
    Allen KN, Dunaway-Mariano D (2009) Markers of fitness in a successful enzyme superfamily. Curr Opin Struct Biol 19:658–665PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Chen Y, Jakoncic J, Carpino N, Nassar N (2009) Structural and functional characterization of the 2H-phosphatase domain of Sts-2 reveals an acid-dependent phosphatase activity. Biochemistry 48:1681–1690PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Cousin W, Courseaux A, Ladoux A, Dani C, Peraldi P (2004) Cloning of hOST-PTP: the only example of a protein-tyrosine-phosphatase the function of which has been lost between rodent and human. Biochem Biophys Res Commun 321:259–265PubMedCrossRefGoogle Scholar
  125. 125.
    Tapparel C, Reymond A, Girardet C, Guillou L, Lyle R, Lamon C, Hutter P, Antonarakis SE (2003) The TPTE gene family: cellular expression, subcellular localization and alternative splicing. Gene 323:189–199PubMedCrossRefGoogle Scholar
  126. 126.
    van Eekelen M, Overvoorde J, van Rooijen C, den Hertog J (2010) Identification and expression of the family of classical protein-tyrosine phosphatases in zebrafish. PLoS One 5:e12573PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Hatzihristidis T, Desai N, Hutchins AP, Meng TC, Tremblay ML, Miranda-Saavedra D (2015) A Drosophila-centric view of protein tyrosine phosphatases. FEBS Lett 589:951–966PubMedCrossRefGoogle Scholar
  128. 128.
    Morrison DK, Murakami MS, Cleghon V (2000) Protein kinases and phosphatases in the Drosophila genome. J Cell Biol 150:F57–F62PubMedCrossRefGoogle Scholar
  129. 129.
    Martin H, Flandez M, Nombela C, Molina M (2005) Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol Microbiol 58:6–16PubMedCrossRefGoogle Scholar
  130. 130.
    Roma-Mateo C, Sacristan-Reviriego A, Beresford NJ, Caparros-Martin JA, Culianez-Macia FA, Martin H, Molina M, Tabernero L, Pulido R (2011) Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms. Mol Genet Genomics 285:341–354PubMedCrossRefGoogle Scholar
  131. 131.
    Hsu F, Mao Y (2013) The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease. Front Biol (Beijing) 8:395–407CrossRefGoogle Scholar
  132. 132.
    Duan G, Li X, Kohn M (2015) The human DEPhOsphorylation database DEPOD: a 2015 update. Nucleic Acids Res 43:D531–D535PubMedCrossRefGoogle Scholar
  133. 133.
    Pons T, Paramonov I, Boullosa C, Ibanez K, Rojas AM, Valencia A (2014) A common structural scaffold in CTD phosphatases that supports distinct catalytic mechanisms. Proteins 82:103–118PubMedCrossRefGoogle Scholar
  134. 134.
    Heneberg P (2009) Use of protein tyrosine phosphatase inhibitors as promising targeted therapeutic drugs. Curr Med Chem 16:706–733PubMedCrossRefGoogle Scholar
  135. 135.
    Heneberg P (2012) Finding the smoking gun: protein tyrosine phosphatases as tools and targets of unicellular microorganisms and viruses. Curr Med Chem 19:1530–1566PubMedCrossRefGoogle Scholar
  136. 136.
    Bohmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J (2013) Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. FEBS J 280:413–431PubMedCrossRefGoogle Scholar
  137. 137.
    Ostman A, Hellberg C, Bohmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6:307–320PubMedCrossRefGoogle Scholar
  138. 138.
    Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev 7:833–846CrossRefGoogle Scholar
  139. 139.
    Keyse SM (2008) Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev 27:253–261PubMedCrossRefGoogle Scholar
  140. 140.
    Pulido R, Hooft van Huijsduijnen R (2008) Protein tyrosine phosphatases: dual-specificity phosphatases in health and disease. FEBS J 275:848–866PubMedCrossRefGoogle Scholar
  141. 141.
    Vang T, Miletic AV, Arimura Y, Tautz L, Rickert RC, Mustelin T (2008) Protein tyrosine phosphatases in autoimmunity. Annu Rev Immunol 26:29–55PubMedCrossRefGoogle Scholar
  142. 142.
    Hardy S, Julien SG, Tremblay ML (2012) Impact of oncogenic protein tyrosine phosphatases in cancer. Anticancer Agents Med Chem 12:4–18PubMedCrossRefGoogle Scholar
  143. 143.
    Julien SG, Dube N, Hardy S, Tremblay ML (2011) Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 11:35–49PubMedCrossRefGoogle Scholar
  144. 144.
    Rhee I, Veillette A (2012) Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat Immunol 13:439–447PubMedCrossRefGoogle Scholar
  145. 145.
    Hendriks WJ, Elson A, Harroch S, Pulido R, Stoker A, den Hertog J (2013) Protein tyrosine phosphatases in health and disease. FEBS J 280:708–730PubMedCrossRefGoogle Scholar
  146. 146.
    Nunes-Xavier CE, Martin-Perez J, Elson A, Pulido R (2013) Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta 1836:211–226PubMedGoogle Scholar
  147. 147.
    Tsou RC, Bence KK (2012) Central regulation of metabolism by protein tyrosine phosphatases. Front Neurosci 6:192PubMedGoogle Scholar
  148. 148.
    Knobler H, Elson A (2014) Metabolic regulation by protein tyrosine phosphatases. J Biomed Res 28:157–168PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Rios P, Nunes-Xavier CE, Tabernero L, Kohn M, Pulido R (2014) Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid Redox Signal 20:2251–2273PubMedCrossRefGoogle Scholar
  150. 150.
    Stebbing J, Lit LC, Zhang H, Darrington RS, Melaiu O, Rudraraju B, Giamas G (2014) The regulatory roles of phosphatases in cancer. Oncogene 33:939–953PubMedCrossRefGoogle Scholar
  151. 151.
    Zhao S, Sedwick D, Wang Z (2015) Genetic alterations of protein tyrosine phosphatases in human cancers. Oncogene 34(30):3885–3894PubMedCrossRefGoogle Scholar
  152. 152.
    Lee H, Yi JS, Lawan A, Min K, Bennett AM (2015) Mining the function of protein tyrosine phosphatases in health and disease. Semin Cell Dev Biol 37:66–72PubMedCrossRefGoogle Scholar
  153. 153.
    Leslie NR (2012) PTEN: an intercellular peacekeeper? Sci Signal 5:pe50PubMedCrossRefGoogle Scholar
  154. 154.
    Boosani CS, Agrawal DK (2013) PTEN modulators: a patent review. Expert Opin Ther Pat 23:569–580PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Papa A, Chen M, Pandolfi PP (2013) Pills of PTEN? In and out for tumor suppression. Cell Res 23:1155–1156PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Pulido R (2015) PTEN: a yin-yang master regulator protein in health and disease. Methods (San Diego, Calif) 77–78:3–10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Instituto de Biología y Genética Molecular (IBGM)CSIC-Universidad de ValladolidValladolidSpain
  2. 2.Department of Tumor Biology, Institute for Cancer ResearchOslo University Hospital RadiumhospitaletOsloNorway
  3. 3.Biocruces Health Research InstituteBarakaldoSpain
  4. 4.IKERBASQUEBasque Foundation for ScienceBilbaoSpain

Personalised recommendations