Advertisement

Focal Cerebral Ischemia by Permanent Middle Cerebral Artery Occlusion in Sheep: Surgical Technique, Clinical Imaging, and Histopathological Results

  • Björn NitzscheEmail author
  • Henryk Barthel
  • Donald Lobsien
  • Johannes Boltze
  • Vilia Zeisig
  • Antje Y. Dreyer
Protocol
Part of the Neuromethods book series (NM, volume 116)

Abstract

According to the recommendation of international expert committees, large animal stroke models are demanded for preclinical research. Based on a brief introduction to the ovine cranial anatomy, a sheep model of permanent middle cerebral artery occlusion (MCAO) will be described in this chapter. The model was particularly designed to verify several therapeutic strategies during both, acute and long-term studies, but is also feasible for development of diagnostic procedures. Further, exemplary application of imaging procedures and imaging data analyses using magnetic resonance imaging (MRI) and positron emission tomography (PET) are described. The chapter also includes recommendations for appropriate animal housing and medication.

Key words

Large animal model Sheep Experimental neurosurgery Craniotomy Experimental stroke Middle cerebral artery occlusion MRI PET 

Notes

Acknowledgments

The authors want to thank Dr. Karl-Titus Hoffmann, professor of neuroradiology, and Dr. Osama Sabri, professor of nuclear medicine, for the allowance to use the scanners in their departments at Leipzig University. The authors are further grateful to Dr. Uwe Gille, Dr. Johannes Seeger, and Dr. Heinz-Adolf Schoon, professors at the Faculty for Veterinary Medicine at Leipzig University.

References

  1. 1.
    O’Donnell MJ, Xavier D, Liu L et al (2010) Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet 376:112–123CrossRefPubMedGoogle Scholar
  2. 2.
    Hacke W, Kaste M, Bluhmki E et al (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359:1317–1329CrossRefPubMedGoogle Scholar
  3. 3.
    Wahlgren N, Ahmed N, Davalos A et al (2008) Thrombolysis with alteplase 3–4.5 h after acute ischaemic stroke (SITS-ISTR): an observational study. Lancet 372:1303–1309CrossRefPubMedGoogle Scholar
  4. 4.
    Hachinski V, Donnan GA, Gorelick PB et al (2010) Stroke: working toward a prioritized world agenda. Cerebrovasc Dis 30:127–147CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Traystman RJ (2003) Animal models of focal and global cerebral ischemia. ILAR J 44:85–95CrossRefPubMedGoogle Scholar
  6. 6.
    STAIR-group (1999) Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 30:2752–2758CrossRefGoogle Scholar
  7. 7.
    Savitz SI, Chopp M, Deans R et al (2011) Stem cell therapy as an emerging paradigm for stroke (STEPS) II. Stroke 42:825–829CrossRefPubMedGoogle Scholar
  8. 8.
    Amiridze N, Gullapalli R, Hoffman G et al (2009) Experimental model of brainstem stroke in rabbits via endovascular occlusion of the basilar artery. J Stroke Cerebrovasc Dis 18:281–287CrossRefPubMedGoogle Scholar
  9. 9.
    Kang BT, Lee JH, Jung DI et al (2007) Canine model of ischemic stroke with permanent middle cerebral artery occlusion: clinical and histopathological findings. J Vet Sci 8:369–376CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Garcia JH, Kalimo H, Kamijyo Y et al (1977) Cellular events during partial cerebral ischemia. I. Electron microscopy of feline cerebral cortex after middle-cerebral-artery occlusion. Virchows Arch B Cell Pathol 25:191–206PubMedGoogle Scholar
  11. 11.
    Imai H, Konno K, Nakamura M et al (2006) A new model of focal cerebral ischemia in the miniature pig. J Neurosurg 104:123–132PubMedGoogle Scholar
  12. 12.
    Marshall JW, Ridley RM (2003) Assessment of cognitive and motor deficits in a marmoset model of stroke. ILAR J 44:153–160CrossRefPubMedGoogle Scholar
  13. 13.
    Shuaib A, Lees KR, Lyden P et al (2007) NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 357:562–571CrossRefPubMedGoogle Scholar
  14. 14.
    Boltze J, Forschler A, Nitzsche B et al (2008) Permanent middle cerebral artery occlusion in sheep: a novel large animal model of focal cerebral ischemia. J Cereb Blood Flow Metab 28:1951–1964CrossRefPubMedGoogle Scholar
  15. 15.
    Behrens H, Ganter M, Hiepe T (2009) [Textbook of ovine diseases]. Parey, Stuttgart, Germany, Chapter in GermanGoogle Scholar
  16. 16.
    Nitzsche B, Frey S, Collins L et al (2015) A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes. Front Neuroanat 9:69. doi: 10.3389/fnana.2015.00069 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Salomon FV, Geyer H, Gille U (2008) [Textbook of anatomy for veterinary medicine]. Enke Verlag, Leipzig, Germany, Chapter in GermanGoogle Scholar
  18. 18.
    Forschler A, Boltze J, Waldmin D et al (2007) [MRI of experimental focal cerebral ischemia in sheep]. Rofo 179:516–524, Article in GermanCrossRefPubMedGoogle Scholar
  19. 19.
    Ashwini CA, Shubha A, Jayanthi KS (2008) Comparative anatomy of the circle of Willis in man, cow, sheep, goat, and pig. Neuroanatomy 2008:54–65Google Scholar
  20. 20.
    Muir KW, Santosh C (2005) Imaging of acute stroke and transient ischaemic attack. J Neurol Neurosurg Psychiatry 76:19–28CrossRefGoogle Scholar
  21. 21.
    Wechsler LR (2011) Imaging evaluation of acute ischemic stroke. Stroke 42:12–15CrossRefGoogle Scholar
  22. 22.
    Nucifora PG, Verma R, Lee SK et al (2007) Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245:367–384CrossRefPubMedGoogle Scholar
  23. 23.
    Swanson RA, Morton MT, Tsao-Wu G et al (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10:290–293CrossRefPubMedGoogle Scholar
  24. 24.
    Alpert NM, Eriksson L, Chang JY et al (1984) Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab 4:28–34CrossRefPubMedGoogle Scholar
  25. 25.
    Baron JC (2001) Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 1:2–8Google Scholar
  26. 26.
    Dreyer A, Stroh A, Nitzsche B et al (2012) Frameless stereotaxy in sheep—neurosurgical and imaging techniques for translational stroke research. INTECH Open Access Publisher, LondonCrossRefGoogle Scholar
  27. 27.
    Wells AJ, Vink R, Blumbergs PC, Brophy BP, Helps SC, Knox SJ, Turner RJ (2012) A surgical model of permanent and transient middle cerebral artery stroke in the sheep. PLoS One 7(7):e42157CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cooley KR, Vanderwolf CH (2004) The sheep brain—a photographic series. A.J. Kirby Co, London, ONGoogle Scholar
  29. 29.
    Mitchell JF (1958) The characteristics of some points of cardiovascular and respiratory representation in the cerebral cortex of sheep. J Physiol 144:17–8PPubMedGoogle Scholar
  30. 30.
    Gierthmuehlen M, Wang X, Gkogkidis A et al (2014) Mapping of sheep sensory cortex with a novel micro-electrocorticography grid. J Comp Neurol 522(16):3590–3608CrossRefPubMedGoogle Scholar
  31. 31.
    Hoffmann A, Stoffel MH, Nitzsche B et al (2014) The ovine cerebral venous system: comparative anatomy, visualization, and implications for translational research. PLoS One 9(4):e92990CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Latchaw RE (2004) Cerebral perfusion imaging in acute stroke. J Vasc Interv Radiol 15:29–46CrossRefGoogle Scholar
  33. 33.
    Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schmidt KF, Ziu M, Schmidt NO et al (2004) Volume reconstruction techniques improve the correlation between histological and in vivo tumor volume measurements in mouse models of human gliomas. J Neurooncol 68:207–215CrossRefPubMedGoogle Scholar
  35. 35.
    Watabe H, Itoh M, Cunningham V et al (1996) Noninvasive quantification of rCBF using positron emission tomography. J Cereb Blood Flow Metab 16:311–319CrossRefPubMedGoogle Scholar
  36. 36.
    Mena H, Cadavid D, Rushing EJ (2004) Human cerebral infarct: a proposed histopathologic classification based on 137 cases. Acta Neuropathol 108:524–530CrossRefPubMedGoogle Scholar
  37. 37.
    Garcia JH, Kamijyo Y (1974) Cerebral infarction. Evolution of histopathological changes after occlusion of a middle cerebral artery in primates. J Neuropathol Exp Neurol 33:408–421CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Björn Nitzsche
    • 1
    • 2
    Email author
  • Henryk Barthel
    • 2
  • Donald Lobsien
    • 3
  • Johannes Boltze
    • 4
    • 5
  • Vilia Zeisig
    • 2
  • Antje Y. Dreyer
    • 1
  1. 1.Department of Cell TherapyFraunhofer Institute for Cell Therapy and ImmunologyLeipzigGermany
  2. 2.Department of Nuclear MedicineUniversity of LeipzigLeipzigGermany
  3. 3.Department of NeuroradiologyUniversity of LeipzigLeipzigGermany
  4. 4.Department of Medical Cell TechnologyFraunhofer Research Institution for Marine BiotechnologyLübeckGermany
  5. 5.Neuroscience CenterMassachusetts General Hospital and Harvard Medical SchoolCharlestownUSA

Personalised recommendations