In Vivo Fluorescence Imaging in the Second Near-Infrared Window Using Carbon Nanotubes

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1444)

Abstract

In vivo fluorescence imaging in the second near-infrared window (NIR-II window, 1000–1700 nm) is a powerful imaging technique that emerged in recent years. This imaging tool allows for noninvasive, deep-tissue visualization and interrogation of anatomical features and functions with improved imaging resolution and contrast at greater tissue penetration depths than traditional fluorescence imaging. Here, we present the detailed protocol for conducting NIR-II fluorescence imaging in live animals, including the procedures for preparation of biocompatible and NIR-II fluorescent carbon nanotube solution, live animal administration and NIR-II fluorescence image acquisition.

Key words

Near-infrared II Second near-infrared window NIR-II fluorescence imaging Carbon nanotubes Tissue penetration Photon scattering Autofluorescence 

Notes

Acknowledgments

We thank members from the Dai lab, in particular Shuo Diao, Alexander L. Antaris, and Dr. Xiaodong Zhang for helpful discussion and support. This study is supported by grants from the National Cancer Institute of US National Institute of Health to H.D. (5R01CA135109-02).

References

  1. 1.
    Hillman EMC, Moore A (2007) All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nat Photonics 1(9):526–530CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Welsher K, Sherlock SP, Dai HJ (2011) Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci U S A 108(22):8943–8948CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ye DJ, Shuhendler AJ, Cui LN, Tong L, Tee SS, Tikhomirov G, Felsher DW, Rao JH (2014) Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat Chem 6(6):519–526CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14(1):71–79CrossRefPubMedGoogle Scholar
  5. 5.
    Blow N (2009) In vivo molecular imaging: the inside job. Nat Methods 6(6):465–469CrossRefGoogle Scholar
  6. 6.
    Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7(5):399–405Google Scholar
  7. 7.
    Nguyen QT, Schroeder LF, Mank M, Muller A, Taylor P, Griesbeck O, Kleinfeld D (2010) An in vivo biosensor for neurotransmitter release and in situ receptor activity. Nat Neurosci 13(1):127–132Google Scholar
  8. 8.
    Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen TW, Bargmann CI, Orger MB, Schreiter ER, Demb JB, Gan WB, Hires SA, Looger LL (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10(2):162–170CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen Q, Cichon J, Wang WT, Qiu L, Lee SJR, Campbell NR, DeStefino N, Goard MJ, Fu ZY, Yasuda R, Looger LL, Arenkiel BR, Gan WB, Feng GP (2012) Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 76(2):297–308CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Trachtenberg JT, Chen BE, Knott GW, Feng GP, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420(6917):788–794CrossRefPubMedGoogle Scholar
  11. 11.
    Gao JH, Chen K, Luong R, Bouley DM, Mao H, Qiao TC, Gambhir SS, Cheng Z (2012) A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett 12(1):281–286CrossRefPubMedGoogle Scholar
  12. 12.
    Shuhendler AJ, Pu KY, Cui L, Uetrecht JP, Rao JH (2014) Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol 32(4):373–380Google Scholar
  13. 13.
    Weissleder R, Tung CH, Mahmood U, Bogdanov A (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang XL, Tian YL, Li Z, Tian XY, Sun HB, Liu H, Moore A, Ran CZ (2013) Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer's disease. J Am Chem Soc 135(44):16397–16409CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sosnovik DE, Nahrendorf M, Deliolanis N, Novikov M, Aikawa E, Josephson L, Rosenzweig A, Weissleder R, Ntziachristos V (2007) Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 115(11):1384–1391CrossRefPubMedGoogle Scholar
  16. 16.
    Rao JH, Dragulescu-Andrasi A, Yao HQ, Yao HQ (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18(1):17–25CrossRefPubMedGoogle Scholar
  17. 17.
    Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2(1):50–64CrossRefPubMedGoogle Scholar
  18. 18.
    Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38(15):2543–2555CrossRefGoogle Scholar
  19. 19.
    Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2006) Optical properties of human cranial bone in the spectral range from 800 to 2000 nm - art. no. 616310. Saratov Fall Meeting 2005: Optical technologies in biophysics and medicine VII.6163: 16310Google Scholar
  20. 20.
    Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB, Xu C (2013) In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7(3):205–209CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bashkatov AN, Genina EA, Tuchin VV (2011) Optical properties of skin, subcutaneous, and muscle tissues: a review. J Innov Opt Health Sci 4(1):9–38CrossRefGoogle Scholar
  22. 22.
    Villa I, Vedda A, Cantarelli IX, Pedroni M, Piccinelli F, Bettinelli M, Speghini A, Quintanilla M, Vetrone F, Rocha U, Jacinto C, Carrasco E, Rodríguez FS, Juarranz Á, del Rosal B, Ortgies DH, Gonzalez PH, Solé JG, Jaque GD (2015) 1.3 μm emitting SrF2: Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res 8(2):649–665CrossRefGoogle Scholar
  23. 23.
    Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai HJ (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4(11):773–780CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Robinson JT, Welsher K, Tabakman SM, Sherlock SP, Wang HL, Luong R, Dai HJ (2010) High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res 3(11):779–793CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Robinson JT, Hong GS, Liang YY, Zhang B, Yaghi OK, Dai HJ (2012) In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J Am Chem Soc 134(25):10664–10669CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hong GS, Lee JC, Robinson JT, Raaz U, Xie LM, Huang NF, Cooke JP, Dai HJ (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18(12):1841CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Diao S, Hong GS, Robinson JT, Jiao LY, Antaris AL, Wu JZ, Choi CL, Dai HJ (2012) Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J Am Chem Soc 134(41):16971–16974CrossRefPubMedGoogle Scholar
  28. 28.
    Antaris AL, Robinson JT, Yaghi OK, Hong GS, Diao S, Luong R, Dai HJ (2013) Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano 7(4):3644–3652CrossRefPubMedGoogle Scholar
  29. 29.
    Hong GS, Diao S, Chang J, Antaris AL, Chen C, Zhang B, Zhao S, Atochin DN, Huang PL, Andreasson KI, Kuo CJ, Dai HJ (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8:723–730Google Scholar
  30. 30.
    Hong GS, Lee JC, Jha A, Diao S, Nakayama KH, Hou LQ, Doyle TC, Robinson JT, Antaris AL, Dai HJ, Cooke JP, Huang NF (2014) Near-infrared II fluorescence for imaging hindlimb vessel regeneration with dynamic tissue perfusion measurement. Circ Cardiovasc Imaging 7(3):517–525Google Scholar
  31. 31.
    Yi HJ, Ghosh D, Ham MH, Qi JF, Barone PW, Strano MS, Belcher AM (2012) M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett 12(3):1176–1183CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bardhan NM, Ghosh D, Belcher AM (2014) Carbon nanotubes as in vivo bacterial probes. Nat Commun 5:4918CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM (2014) Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci U S A 111(38):13948–13953CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang Y, Hong GS, Zhang YJ, Chen GC, Li F, Dai HJ, Wang QB (2012) Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6(5):3695–3702CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hong GS, Robinson JT, Zhang YJ, Diao S, Antaris AL, Wang QB, Dai HJ (2012) In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed Engl 51(39):9818–9821CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang Y, Zhang YJ, Hong GS, He W, Zhou K, Yang K, Li F, Chen GC, Liu Z, Dai HJ, Wang QB (2013) Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 34(14):3639–3646CrossRefPubMedGoogle Scholar
  37. 37.
    Dong BH, Li CY, Chen GC, Zhang YJ, Zhang Y, Deng MJ, Wang QB (2013) Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem Mater 25(12):2503–2509CrossRefGoogle Scholar
  38. 38.
    Chen GC, Tian F, Zhang Y, Zhang YJ, Li CY, Wang QB (2014) Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag-2 S quantum dots. Adv Funct Mater 24(17):2481–2488CrossRefGoogle Scholar
  39. 39.
    Li CY, Zhang YJ, Wang M, Zhang Y, Chen GC, Li L, Wu DM, Wang QB (2014) In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35(1):393–400CrossRefPubMedGoogle Scholar
  40. 40.
    Hu F, Li C, Zhang Y, Wang M, Wu D, Wang Q (2015) Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res 8(5):1637–1647CrossRefGoogle Scholar
  41. 41.
    Tsukasaki Y, Morimatsu M, Nishimura G, Sakata T, Yasuda H, Komatsuzaki A, Watanabe TM, Jin T (2014) Synthesis and optical properties of emission-tunable PbS/CdS core-shell quantum dots for in vivo fluorescence imaging in the second near-infrared window. Rsc Adv 4(77):41164–41171CrossRefGoogle Scholar
  42. 42.
    Tsukasaki Y, Komatsuzaki A, Mori Y, Ma Q, Yoshioka Y, Jin T (2014) A short-wavelength infrared emitting multimodal probe for non-invasive visualization of phagocyte cell migration in living mice. Chem Commun 50(92): 14356–14359CrossRefGoogle Scholar
  43. 43.
    Nakane Y, Tsukasaki Y, Sakata T, Yasuda H, Jin T (2013) Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000-1400 nm). Chem Commun 49(69): 7584–7586CrossRefGoogle Scholar
  44. 44.
    Naczynski DJ, Tan MC, Zevon M, Wall B, Kohl J, Kulesa A, Chen S, Roth CM, Riman RE, Moghe PV (2013) Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun 4:2199CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Naczynski DJ, Sun C, Türkcan S, Jenkins C, Koh AL, Ikeda D, Pratx G, Xing L (2015) X-ray induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Lett 15(1):96–102CrossRefPubMedGoogle Scholar
  46. 46.
    Rocha U, Kumar KU, Jacinto C, Villa I, Sanz-Rodriguez F, de la Cruz MDI, Juarranz A, Carrasco E, van Veggel FCJM, Bovero E, Sole JG, Jaque D (2014) Neodymium-doped LaF (3) nanoparticles for fluorescence bioimaging in the second biological window. Small 10(6):1141–1154CrossRefPubMedGoogle Scholar
  47. 47.
    Hong GS, Zou YP, Antaris AL, Diao S, Wu D, Cheng K, Zhang XD, Chen CX, Liu B, He YH, Wu JZ, Yuan J, Zhang B, Tao ZM, Fukunaga C, Dai HJ (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206PubMedGoogle Scholar
  48. 48.
    Tao ZM, Hong GS, Shinji C, Chen CX, Diao S, Antaris AL, Zhang B, Zou YP, Dai HJ (2013) Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew Chem Int Ed Engl 52(49):13002–13006CrossRefPubMedGoogle Scholar
  49. 49.
    Kam NWS, O'Connell M, Wisdom JA, Dai HJ (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102(33): 11600–11605CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Matthes R, Cain CP, Courant D, Freund DA, Grossman BA, Kennedy PA, Lund DJ, Mainster MA, Manenkov AA, Marshall WJ, McCally R, Rockwell BA, Sliney DH, Smith PA, Stuck BE, Tell SA, Wolbarsht ML, Zheltov GI, Cheney F, McLin L, Ness J, Schulmeister K, Steinman RM, Sutter E, Zwick H, Protect I.C.N.-I.R (2000) Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm. Health Phys 79(4):431–440CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA
  2. 2.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations