In Vivo 19F-Magnetic Resonance Imaging of Adoptively Transferred NK Cells

  • Srinivas S. Somanchi
  • Bridget A. Kennis
  • Vidya Gopalakrishnan
  • Dean A. Lee
  • James A. BanksonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1441)


In order to assess the biodistribution, homing, and persistence of adoptively transferred natural killer (NK) cell immunotherapies, there is a need for imaging methodology suitable for use in preclinical studies with relevance to clinical translation. Amongst the available approaches, 19F-MRI is very appealing for in vivo imaging due to the absence of background signal, enabling clear detection of 19F labeled cells in vivo. Here we describe a methodology for in vivo imaging of adoptively transferred NK cells labeled with 19F nano-emulsion, using clinically translatable technology of 19F/1H magnetic resonance imaging.

Key words

NK cells Adoptive immunotherapy In vivo imaging 19Magnetic resonance imaging 



This work was supported in part by funding from the Addis Faith Foundation to VG, CURE Childhood Cancer funding to DAL, and by MD Anderson Cancer Center’s Core Grant (P30-CA016672).


  1. 1.
    Somanchi SS, Senyukov VV, Denman CJ et al (2011) Expansion, purification, and functional assessment of human peripheral blood NK cells. J Vis Exp 48, e2540. doi: 10.3791/2540 Google Scholar
  2. 2.
    Denman CJ, Senyukov VV, Somanchi SS et al (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7, e30264CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Edinger M, Cao YA, Verneris MR et al (2003) Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 101:640–648CrossRefPubMedGoogle Scholar
  4. 4.
    Tavri S, Jha P, Meier R et al (2009) Optical imaging of cellular immunotherapy against prostate cancer. Mol Imaging 8:15–26Google Scholar
  5. 5.
    Leung K (2009) DiD-labeled anti-EpCAM-directed NK-92-scFv(MOC31) zeta cells. 2009 Aug 28 [Updated 2009 Sep 30]. In: Molecular imaging and contrast agent database (MICAD) [Internet]. National Center for Biotechnology Information (US), Bethesda; 2004–2013.
  6. 6.
    Lim YT, Cho MY, Noh YW et al (2009) Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy. Nanotechnology 20:475102CrossRefPubMedGoogle Scholar
  7. 7.
    Youniss FM, Sundaresan G, Graham LJ et al (2014) Near-infrared imaging of adoptive immune cell therapy in breast cancer model using cell membrane labeling. PLoS One 9, e109162CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Olson JA, Zeiser R, Beilhack A et al (2009) Tissue-specific homing and expansion of donor NK cells in allogeneic bone marrow transplantation. J Immunol 183:3219–3228CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Meller B, Frohn C, Brand JM et al (2004) Monitoring of a new approach of immunotherapy with allogenic (111)In-labelled NK cells in patients with renal cell carcinoma. Eur J Nucl Med Mol Imaging 31:403–407CrossRefPubMedGoogle Scholar
  10. 10.
    Matera L, Galetto A, Bello M et al (2006) In vivo migration of labeled autologous natural killer cells to liver metastases in patients with colon carcinoma. J Transl Med 4:49CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wagstaff J, Gibson C, Thatcher N et al (1982) A method for studying the dynamics of the primary migration of human lymphocytes using Indium-iii oxine cell labelling. Adv Exp Med Biol 149:153–160CrossRefPubMedGoogle Scholar
  12. 12.
    Meier R, Piert M, Piontek G et al (2008) Tracking of [18F]FDG-labeled natural killer cells to HER2/neu-positive tumors. Nucl Med Biol 35:579–588CrossRefPubMedGoogle Scholar
  13. 13.
    Melder RJ, Elmaleh D, Brownell AL et al (1994) A method for labeling cells for positron emission tomography (PET) studies. J Immunol Methods 175:79–87CrossRefPubMedGoogle Scholar
  14. 14.
    Dotti G, Tian M, Savoldo B et al (2009) Repetitive noninvasive monitoring of HSV1-tk-expressing T cells intravenously infused into nonhuman primates using positron emission tomography and computed tomography with 18F-FEAU. Mol Imaging 8:230–237PubMedPubMedCentralGoogle Scholar
  15. 15.
    Sheu AY, Zhang Z, Omary RA et al (2013) MRI-monitored transcatheter intra-arterial delivery of SPIO-labeled natural killer cells to hepatocellular carcinoma: preclinical studies in a rodent model. Invest Radiol 48:492–499CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mallett CL, McFadden C, Chen Y et al (2012) Migration of iron-labeled KHYG-1 natural killer cells to subcutaneous tumors in nude mice, as detected by magnetic resonance imaging. Cytotherapy 14:743–751CrossRefPubMedGoogle Scholar
  17. 17.
    Daldrup-Link HE, Meier R, Rudelius M et al (2005) In vivo tracking of genetically engineered, anti-HER2/neu directed natural killer cells to HER2/neu positive mammary tumors with magnetic resonance imaging. Eur Radiol 15:4–13CrossRefPubMedGoogle Scholar
  18. 18.
    Meier R, Golovko D, Tavri S et al (2011) Depicting adoptive immunotherapy for prostate cancer in an animal model with magnetic resonance imaging. Magn Reson Med 65:756–763CrossRefPubMedGoogle Scholar
  19. 19.
    Holland GN, Bottomley PA, Hinshaw WS (1977) 19F magnetic resonance imaging. J Magn Reson 28:133–136Google Scholar
  20. 20.
    Partlow KC, Chen J, Brant JA et al (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21:1647–1654CrossRefPubMedGoogle Scholar
  21. 21.
    Boehm-Sturm P, Mengler L, Wecker S et al (2011) In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One 6, e29040CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ahrens ET, Flores R, Xu H et al (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987CrossRefPubMedGoogle Scholar
  23. 23.
    Bulte JW (2005) Hot spot MRI emerges from the background. Nat Biotechnol 23:945–946CrossRefPubMedGoogle Scholar
  24. 24.
    Srinivas M, Heerschap A, Ahrens ET et al (2010) (19)F MRI for quantitative in vivo cell tracking. Trends Biotechnol 28:363–370CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Helfer BM, Balducci A, Nelson AD et al (2010) Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 12:238–250CrossRefPubMedGoogle Scholar
  26. 26.
    Srinivas M, Morel PA, Ernst LA et al (2007) Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med 58:725–734CrossRefPubMedGoogle Scholar
  27. 27.
    Kadayakkara DK, Beatty PL, Turner MS et al (2010) Inflammation driven by overexpression of the hypoglycosylated abnormal mucin 1 (MUC1) links inflammatory bowel disease and pancreatitis. Pancreas 39:510–515CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Janjic JM, Srinivas M, Kadayakkara DK et al (2008) Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc 130:2832–2841CrossRefPubMedGoogle Scholar
  29. 29.
    Aoki Y, Hashizume R, Ozawa T et al (2012) An experimental xenograft mouse model of diffuse pontine glioma designed for therapeutic testing. J Neurooncol 108:29–35CrossRefPubMedGoogle Scholar
  30. 30.
    Brockmann MA, Westphal M, Lamszus K (2003) Improved method for the intracerebral engraftment of tumour cells and intratumoural treatment using a guide screw system in mice. Acta Neurochir (Wien) 145:777–781CrossRefGoogle Scholar
  31. 31.
    Lal S, Lacroix M, Tofilon P et al (2000) An implantable guide-screw system for brain tumor studies in small animals. J Neurosurg 92:326–333CrossRefPubMedGoogle Scholar
  32. 32.
    Donoghue JF, Bogler O, Johns TG (2011) A simple guide screw method for intracranial xenograft studies in mice. J Vis Exp 55, e3157. doi: 10.3791/3157 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Srinivas S. Somanchi
    • 1
  • Bridget A. Kennis
    • 1
  • Vidya Gopalakrishnan
    • 1
  • Dean A. Lee
    • 1
  • James A. Bankson
    • 2
    Email author
  1. 1.Division of PediatricsThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Imaging Physics, Division of Diagnostic ImagingThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations