Mouse Xenograft Model for Intraperitoneal Administration of NK Cell Immunotherapy for Ovarian Cancer

  • David L. Hermanson
  • Laura Bendzick
  • Dan S. Kaufman
Part of the Methods in Molecular Biology book series (MIMB, volume 1441)


Natural killer (NK) cells are an attractive cell population for immunotherapy. Adoptive transfer of NK cells has been tested in multiple clinical trials including acute myeloid leukemia (AML) and ovarian cancer, although limitations do exist especially for treatment of solid tumors. In order to overcome these limitations, mouse xenograft models are needed for evaluation of various NK cell populations, as well as routes of NK cell administration. Here, we describe the methods used for the establishment of an intraperitoneal (ip) ovarian cancer mouse xenograft model with ip delivery of NK cells. This model has been successfully employed with multiple ovarian cell lines and could be applied to other tumor models where the tumor’s primary location is in the peritoneal cavity. It is also compatible with multiple routes of NK cell administration. Bioluminescent imaging for monitoring tumor formation and response provides for easy visualization of NK cell tumor inhibition. This xenograft model is superior to other models because the tumor is implanted into the same physiological space where ovarian cancer is found, which allows for improved mimicking of actual disease.

Key words

Natural killer cells Mouse xenograft Immunotherapy Bioluminescent imaging Ovarian cancer 


  1. 1.
    Vivier E, Raulet DH, Moretta A et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Miller JS, Soignier Y, Panoskaltsis-Mortari A et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105:3051–3057CrossRefPubMedGoogle Scholar
  3. 3.
    Geller MA, Cooley S, Judson PL et al (2011) A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 13:98–107CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cheng M, Chen Y, Xiao W, Sun R, Tian Z (2013) NK cell—based immunotherapy for malignant diseases. Cell Mol Immunol 10:230–252CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tonn T, Schwabe D, Klingemann HG et al (2013) Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 15:1563–1570CrossRefPubMedGoogle Scholar
  6. 6.
    Koepsell SA, Miller JS, McKenna DH (2013) Natural killer cells: a review of manufacturing and clinical utility. Transfusion 53:404–410CrossRefPubMedGoogle Scholar
  7. 7.
    Fujisaki H, Kakuda H, Shimasaki N et al (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 69:4010–4017CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Denman CJ, Senyukov VV, Somanchi SS et al (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7, e30264CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Knorr DA, Ni Z, Hermanson D et al (2013) Clinical—scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med 2:274–283CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ni Z, Knorr DA, Kaufman DS (2013) Hematopoietic and nature killer cell development from human pluripotent stem cells. Methods Mol Biol 1029:33–41CrossRefPubMedGoogle Scholar
  11. 11.
    Woll PS, Martin CH, Miller JS, Kaufman DS (2005) Human embryonic stem cell—derived NK cells acquire functional receptors and cytolytic activity. J Immunol 175:5095–5103CrossRefPubMedGoogle Scholar
  12. 12.
    Woll PS, Grzywacz B, Tian X et al (2009) Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood 113:6094–6101CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Geller MA, Knorr DA, Hermanson DA et al (2013) Intraperitoneal delivery of human natural killer cells for treatment of ovarian cancer in a mouse xenograft model. Cytotherapy 15:1297–1306CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shultz LD, Lyons BL, Burzenski LM et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174:6477–6489CrossRefPubMedGoogle Scholar
  15. 15.
    Miller JS, Rooney CM, Curtsinger J et al (2014) Expansion and homing of adoptively transferred human natural killer cells in immunodeficient mice varies with product preparation and in vivo cytokine administration: implications for clinical therapy. Biol Blood Marrow Transplant 20:1252–1257CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • David L. Hermanson
    • 2
  • Laura Bendzick
    • 2
  • Dan S. Kaufman
    • 1
  1. 1.Department of MedicineUniversity of California- San Diego, Sanford ConsortiumLa JollaUSA
  2. 2.Department of MedicineUniversity of Minnesota as institutionLa JollaUSA

Personalised recommendations