Modification of Expanded NK Cells with Chimeric Antigen Receptor mRNA for Adoptive Cellular Therapy

  • Yaya Chu
  • Allyson Flower
  • Mitchell S. CairoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1441)


NK cells are bone marrow-derived cytotoxic lymphocytes that play a major role in the rejection of tumors and cells infected by viruses. The regulation of NK activation vs inhibition is regulated by the expression of a variety of NK receptors (NKRs) and specific NKRs’ ligands expressed on their targets. However, factors limiting NK therapy include small numbers of active NK cells in unexpanded peripheral blood and lack of specific tumor targeting. Chimeric antigen receptors (CAR) usually include a single-chain Fv variable fragment from a monoclonal antibody, a transmembrane hinge region, and a signaling domain such as CD28, CD3-zeta, 4-1BB (CD137), or 2B4 (CD244) endodimers. Redirecting NK cells with a CAR will circumvent the limitations of the lack of NK targeting specificity. This chapter focuses on the methods to expand human NK cells from peripheral blood by co-culturing with feeder cells and to modify the expanded NK cells efficiently with the in vitro transcribed CAR mRNA by electroporation and to test the functionality of the CAR-modified expanded NK cells for use in adoptive cellular immunotherapy.

Key words

Chimeric antigen receptor Natural killer cells mRNA Electroporation Adoptive cell therapy 



The authors thank Erin Morris, RN, for her excellent assistance with the preparation of this manuscript. The authors also thank Dr. Dario Campana (St. Jude Children’s Research Hospital) and Dr. Terrence Geiger (St. Jude Children’s Research Hospital) for kindly providing anti-CD20 scFv. The research for this study was supported by the grant from the Pediatric Cancer Research Foundation and the New York Medical College Intramural Research Award.


  1. 1.
    Paust S, von Andrian UH (2011) Natural killer cell memory. Nat Immunol 12:500–508CrossRefPubMedGoogle Scholar
  2. 2.
    Vivier E, Raulet DH, Moretta A et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49. doi: 10.1126/science.1198687 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vivier E, Tomasello E, Baratin M et al (2008) Functions of natural killer cells. Nat Immunol 9:503–510. doi: 10.1038/ni1582 CrossRefPubMedGoogle Scholar
  4. 4.
    Raulet DH, Vance RE (2006) Self-tolerance of natural killer cells. Nat Rev Immunol 6:520–531. doi: 10.1038/nri1863 CrossRefPubMedGoogle Scholar
  5. 5.
    Shereck E, Satwani P, Morris E et al (2007) Human natural killer cells in health and disease. Pediatr Blood Cancer 49:615–623. doi: 10.1002/pbc.21158 CrossRefPubMedGoogle Scholar
  6. 6.
    Fauriat C, Just-Landi S, Mallet F et al (2007) Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 109:323–330. doi: 10.1182/blood-2005-08-027979 CrossRefPubMedGoogle Scholar
  7. 7.
    Verheyden S, Bernier M, Demanet C (2004) Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia 18:2002–2007. doi: 10.1038/sj.leu.2403525 CrossRefPubMedGoogle Scholar
  8. 8.
    Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106:376–383. doi: 10.1182/blood-2004-12-4797 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chu Y, Hochberg J, Yahr A et al (2015) Targeting CD20+ aggressive B-cell non-Hodgkin lymphoma by anti-CD20 CAR mRNA-modified expanded natural killer cells in vitro and in NSG mice. Cancer Immunol Res 3:333–344. doi: 10.1158/2326-6066.CIR-14-0114 CrossRefPubMedGoogle Scholar
  10. 10.
    Denman CJ, Senyukov VV, Somanchi SS et al (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7:e30264. doi: 10.1371/journal.pone.0030264 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Eshhar Z, Waks T, Gross G et al (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A 90:720–724CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Porter DL, Levine BL, Kalos M et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733. doi: 10.1056/NEJMoa1103849 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Grupp SA, Kalos M, Barrett D et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518. doi: 10.1056/NEJMoa1215134 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Brentjens RJ, Davila ML, Riviere I et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5:177ra138. doi: 10.1126/scitranslmed.3005930 CrossRefGoogle Scholar
  15. 15.
    Kochenderfer JN, Dudley ME, Feldman SA et al (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119:2709–2720. doi: 10.1182/blood-2011-10-384388 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100. doi: 10.1126/science.1068440 CrossRefPubMedGoogle Scholar
  17. 17.
    Smyth MJ, Hayakawa Y, Takeda K et al (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861. doi: 10.1038/nrc928 CrossRefPubMedGoogle Scholar
  18. 18.
    Degli-Esposti MA, Smyth MJ (2005) Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 5:112–124. doi: 10.1038/nri1549 CrossRefPubMedGoogle Scholar
  19. 19.
    Ayello J, van de Ven C, Cairo E et al (2009) Characterization of natural killer and natural killer-like T cells derived from ex vivo expanded and activated cord blood mononuclear cells: implications for adoptive cellular immunotherapy. Exp Hematol 37:1216–1229. doi: 10.1016/j.exphem.2009.07.009 CrossRefPubMedGoogle Scholar
  20. 20.
    Czuczman MS, Olejniczak S, Gowda A et al (2008) Acquirement of rituximab resistance in lymphoma cell lines is associated with both global CD20 gene and protein down-regulation regulated at the pretranscriptional and posttranscriptional levels. Clin Cancer Res 14:1561–1570. doi: 10.1158/1078-0432.CCR-07-1254, 14/5/1561 [pii]CrossRefPubMedGoogle Scholar
  21. 21.
    Alter G, Malenfant JM, Altfeld M (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294:15–22. doi: 10.1016/j.jim.2004.08.008, S0022-1759(04)00292-3 [pii]CrossRefPubMedGoogle Scholar
  22. 22.
    Schuerwegh AJ, Stevens WJ, Bridts CH et al (2001) Evaluation of monensin and brefeldin A for flow cytometric determination of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha in monocytes. Cytometry 46:172–176. doi: 10.1002/cyto.1102 [pii]CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yaya Chu
    • 1
  • Allyson Flower
    • 1
  • Mitchell S. Cairo
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    Email author
  1. 1.Department of PediatricsNew York Medical CollegeValhallaUSA
  2. 2.Department of MedicineMaria Fareri Children’s Hospital at Westchester Medical Center, New York Medical CollegeValhallaUSA
  3. 3.Department of PathologyNew York Medical CollegeValhallaUSA
  4. 4.Department of Microbiology and ImmunologyNew York Medical CollegeValhallaUSA
  5. 5.Department of Cell Biology and AnatomyNew York Medical CollegeValhallaUSA
  6. 6.Maria Fareri Children’s Hospital at Westchester Medical CenterNew York Medical CollegeValhallaUSA

Personalised recommendations