Bacterial Cell Wall Homeostasis pp 247-270

Part of the Methods in Molecular Biology book series (MIMB, volume 1440) | Cite as

Coarse-Grained Molecular Dynamics Simulations of the Bacterial Cell Wall

  • Lam T. Nguyen
  • James C. Gumbart
  • Grant J. Jensen
Protocol

Abstract

Understanding mechanisms of bacterial sacculus growth is challenging due to the time and length scales involved. Enzymes three orders of magnitude smaller than the sacculus somehow coordinate and regulate their processes to double the length of the sacculus while preserving its shape and integrity, all over a period of tens of minutes to hours. Decades of effort using techniques ranging from biochemical analysis to microscopy have produced vast amounts of data on the structural and chemical properties of the cell wall, remodeling enzymes and regulatory proteins. The overall mechanism of cell wall synthesis, however, remains elusive. To approach this problem differently, we have developed a coarse-grained simulation method in which, for the first time to our knowledge, the activities of individual enzymes involved are modeled explicitly. We have already used this method to explore many potential molecular mechanisms governing cell wall synthesis, and anticipate applying the same method to other, related questions of bacterial morphogenesis. In this chapter, we present the details of our method, from coarse-graining the cell wall and modeling enzymatic activities to characterizing shape and visualizing sacculus growth.

Key words

Coarse-grained modeling Molecular dynamics simulations Cell wall synthesis Bacterial morphogenesis Rod shape maintenance 

References

  1. 1.
    Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203PubMedPubMedCentralGoogle Scholar
  2. 2.
    Primosigh J, Pelzer H, Maass D, Weidel W (1961) Chemical characterization of mucopeptides released from the E. coli B cell wall by enzymic action. Biochim Biophys Acta 46:68–80CrossRefPubMedGoogle Scholar
  3. 3.
    Glauner B (1988) Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem 172:451–464. doi:10.1016/0003-2697(88)90468-X CrossRefPubMedGoogle Scholar
  4. 4.
    Harz H, Burgdorf K, Höltje J-V (1990) Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Anal Biochem 190:120–128. doi:10.1016/0003-2697(90)90144-X CrossRefPubMedGoogle Scholar
  5. 5.
    Weidel W, Pelzer H (1964) Bagshaped macromolecules—a new outlook on bacterial cell walls. Adv Enzymol Relat Areas Mol Biol 26:193–232PubMedGoogle Scholar
  6. 6.
    Gan L, Chen S, Jensen GJ (2008) Molecular organization of Gram-negative peptidoglycan. Proc Natl Acad Sci 105:18953–18957. doi:10.1073/pnas.0808035105 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barreteau H, Kovac A, Boniface A et al (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32:168–207. doi:10.1111/j.1574-6976.2008.00104.x CrossRefPubMedGoogle Scholar
  8. 8.
    Sauvage E, Kerff F, Terrak M et al (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258. doi:10.1111/j.1574-6976.2008.00105.x CrossRefPubMedGoogle Scholar
  9. 9.
    Singh SK, SaiSree L, Amrutha RN, Reddy M (2012) Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of Escherichia coliK12. Mol Microbiol 86:1036–1051. doi:10.1111/mmi.12058 CrossRefPubMedGoogle Scholar
  10. 10.
    Sung M-T, Lai Y-T, Huang C-Y et al (2009) Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc Natl Acad Sci U S A 106:8824–8829. doi:10.1073/pnas.0904030106 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vollmer W, Bertsche U (2008) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta 1778:1714–1734, doi: 16/j.bbamem.2007.06.007CrossRefPubMedGoogle Scholar
  12. 12.
    Banzhaf M, van den Berg van Saparoea B, Terrak M et al (2012) Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Mol Microbiol 85:179–194. doi:10.1111/j.1365-2958.2012.08103.x CrossRefPubMedGoogle Scholar
  13. 13.
    Romeis T, Höltje JV (1994) Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. J Biol Chem 269:21603–21607PubMedGoogle Scholar
  14. 14.
    von Rechenberg M, Ursinus A, Höltje JV (1996) Affinity chromatography as a means to study multienzyme complexes involved in murein synthesis. Microb Drug Resist 2:155–157CrossRefGoogle Scholar
  15. 15.
    Vollmer W, von Rechenberg M, Holtje J-V (1999) Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli. J Biol Chem 274:6726–6734. doi:10.1074/jbc.274.10.6726 CrossRefPubMedGoogle Scholar
  16. 16.
    Bertsche U, Kast T, Wolf B et al (2006) Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Mol Microbiol 61:675–690. doi:10.1111/j.1365-2958.2006.05280.x CrossRefPubMedGoogle Scholar
  17. 17.
    Paradis-Bleau C, Markovski M, Uehara T et al (2010) Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143:1110–1120. doi:10.1016/j.cell.2010.11.037 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Typas A, Banzhaf M, van den Berg van Saparoea B et al (2010) Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143:1097–1109. doi:10.1016/j.cell.2010.11.038 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Divakaruni AV, Loo RRO, Xie Y et al (2005) The cell-shape protein MreC interacts with extracytoplasmic proteins including cell wall assembly complexes in Caulobacter crescentus. Proc Natl Acad Sci U S A 102:18602–18607. doi:10.1073/pnas.0507937102 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    van den Ent F, Leaver M, Bendezu F et al (2006) Dimeric structure of the cell shape protein MreC and its functional implications. Mol Microbiol 62:1631–1642. doi:10.1111/j.1365-2958.2006.05485.x CrossRefPubMedGoogle Scholar
  21. 21.
    White CL, Kitich A, Gober JW (2010) Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol Microbiol 76:616–633. doi:10.1111/j.1365-2958.2010.07108.x CrossRefPubMedGoogle Scholar
  22. 22.
    Dye NA, Pincus Z, Theriot JA et al (2005) Two independent spiral structures control cell shape in Caulobacter. Proc Natl Acad Sci U S A 102:18608–18613. doi:10.1073/pnas.0507708102 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Domínguez-Escobar J, Chastanet A, Crevenna AH et al (2011) Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333:225–228. doi:10.1126/science.1203466 CrossRefPubMedGoogle Scholar
  24. 24.
    Garner EC, Bernard R, Wang W et al (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:222–225. doi:10.1126/science.1203285 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lee TK, Tropini C, Hsin J et al (2014) A dynamically assembled cell wall synthesis machinery buffers cell growth. Proc Natl Acad Sci 201313826. doi: 10.1073/pnas.1313826111
  26. 26.
    Koch AL (1990) Additional arguments for the key role of “smart” autolysins in the enlargement of the wall of gram-negative bacteria. Res Microbiol 141:529–541CrossRefPubMedGoogle Scholar
  27. 27.
    Jones LJF, Carballido-López R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922, doi: 16/S0092-8674(01)00287-2CrossRefPubMedGoogle Scholar
  28. 28.
    van Teeffelen S, Wang S, Furchtgott L et al (2011) The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci 108:15822–15827. doi:10.1073/pnas.1108999108 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776, doi: 16/S0092-8674(03)00421-5CrossRefPubMedGoogle Scholar
  30. 30.
    Kruse T, Møller-Jensen J, Løbner-Olesen A, Gerdes K (2003) Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J 22:5283–5292. doi:10.1093/emboj/cdg504 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shih Y-L, Le T, Rothfield L (2003) Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci 100:7865–7870. doi:10.1073/pnas.1232225100 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Soufo HJD, Graumann PL (2003) Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr Biol 13:1916–1920. doi:10.1016/j.cub.2003.10.024 CrossRefPubMedGoogle Scholar
  33. 33.
    Soufo HJD, Graumann PL (2004) Dynamic movement of actin-like proteins within bacterial cells. EMBO Rep 5:789–794. doi:10.1038/sj.embor.7400209 CrossRefGoogle Scholar
  34. 34.
    Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape‐determining bacterial actin homologue, co‐ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332. doi:10.1111/j.1365-2958.2003.03936.x CrossRefPubMedGoogle Scholar
  35. 35.
    Gitai Z, Dye N, Shapiro L (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci U S A 101:8643–8648. doi:10.1073/pnas.0402638101 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Vats P, Rothfield L (2007) Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle. Proc Natl Acad Sci 104:17795–17800. doi:10.1073/pnas.0708739104 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Swulius MT, Chen S, Jane Ding H et al (2011) Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria. Biochem Biophys Res Commun 407:650–655. doi:10.1016/j.bbrc.2011.03.062 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Swulius MT, Jensen GJ (2012) The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-terminal yellow fluorescent protein tag. J Bacteriol 194:6382–6386. doi:10.1128/JB.00505-12 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Reimold C, Defeu Soufo HJ, Dempwolff F, Graumann PL (2013) Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology. Mol Biol Cell 24:2340–2349. doi:10.1091/mbc.E12-10-0728 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Olshausen PV, Defeu Soufo HJ, Wicker K et al (2013) Superresolution imaging of dynamic MreB filaments in B. subtilis—a multiple-motor-driven transport? Biophys J 105:1171–1181. doi:10.1016/j.bpj.2013.07.038 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ursell TS, Nguyen J, Monds RD et al (2014) Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc Natl Acad Sci 111:E1025–E1034. doi:10.1073/pnas.1317174111 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Huang KC, Mukhopadhyay R, Wen B et al (2008) Cell shape and cell-wall organization in Gram-negative bacteria. Proc Natl Acad Sci 105:19282–19287. doi:10.1073/pnas.0805309105 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang S, Furchtgott L, Huang KC, Shaevitz JW (2012) Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. Proc Natl Acad Sci 109:E595–E604. doi:10.1073/pnas.1117132109 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Furchtgott L, Wingreen NS, Huang KC (2011) Mechanisms for maintaining cell shape in rod‐shaped Gram‐negative bacteria. Mol Microbiol 81:340–353. doi:10.1111/j.1365-2958.2011.07616.x CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nguyen LT, Gumbart JC, Beeby M, Jensen GJ (2015) Coarse-grained simulations of bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod shape. Proc Natl Acad Sci 112:E3689–E3698. doi:10.1073/pnas.1504281112 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Höltje J-V (1996) A hypothetical holoenzyme involved in the replication of the murein sacculus of Escherichia Coli. Microbiology 142:1911–1918. doi:10.1099/13500872-142-8-1911 CrossRefPubMedGoogle Scholar
  47. 47.
    Cooper S, Hsieh ML, Guenther B (1988) Mode of peptidoglycan synthesis in Salmonella typhimurium: single-strand insertion. J Bacteriol 170:3509–3512PubMedPubMedCentralGoogle Scholar
  48. 48.
    de Jonge BL, Wientjes FB, Jurida I et al (1989) Peptidoglycan synthesis during the cell cycle of Escherichia coli: composition and mode of insertion. J Bacteriol 171:5783–5794PubMedPubMedCentralGoogle Scholar
  49. 49.
    Burman LG, Park JT (1984) Molecular model for elongation of the murein sacculus of Escherichia coli. Proc Natl Acad Sci U S A 81:1844–1848CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zijderveld CA, Aarsman ME, den Blaauwen T, Nanninga N (1991) Penicillin-binding protein 1B of Escherichia coli exists in dimeric forms. J Bacteriol 173:5740–5746PubMedPubMedCentralGoogle Scholar
  51. 51.
    Charpentier X, Chalut C, Rémy M-H, Masson J-M (2002) Penicillin-binding proteins 1a and 1b form independent dimers in Escherichia coli. J Bacteriol 184:3749–3752. doi:10.1128/JB.184.13.3749-3752.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bertsche U, Breukink E, Kast T, Vollmer W (2005) In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli. J Biol Chem 280:38096–38101. doi:10.1074/jbc.M508646200 CrossRefPubMedGoogle Scholar
  53. 53.
    Zhao G, Perilla JR, Yufenyuy EL et al (2013) Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497:643–646. doi:10.1038/nature12162 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Burge RE, Fowler AG, Reaveley DA (1977) Structure of the peptidoglycan of bacterial cell walls. J Mol Biol 117:927–953. doi:10.1016/S0022-2836(77)80006-5 CrossRefPubMedGoogle Scholar
  55. 55.
    Labischinski H, Barnickel G, Bradaczek H, Giesbrecht P (1979) On the secondary and tertiary structure of murein. Eur J Biochem 95:147–155. doi:10.1111/j.1432-1033.1979.tb12949.x CrossRefPubMedGoogle Scholar
  56. 56.
    Kim SJ, Singh M, Preobrazhenskaya M, Schaefer J (2013) Staphylococcus aureus peptidoglycan stem packing by rotational-echo double resonance NMR spectroscopy. Biochemistry (Mosc) 52:3651–3659. doi:10.1021/bi4005039 CrossRefGoogle Scholar
  57. 57.
    Beeby M, Gumbart JC, Roux B, Jensen GJ (2013) Architecture and assembly of the Gram-positive cell wall. Mol Microbiol 88:664–672. doi:10.1111/mmi.12203 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gumbart JC, Beeby M, Jensen GJ, Roux B (2014) Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations. PLoS Comput Biol 10, e1003475. doi:10.1371/journal.pcbi.1003475 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Darve E, Pohorille A (2001) Calculating free energies using average force. J Chem Phys 115:9169–9183. doi:10.1063/1.1410978 CrossRefGoogle Scholar
  61. 61.
    Hénin J, Chipot C (2004) Overcoming free energy barriers using unconstrained molecular dynamics simulations. J Chem Phys 121:2904–2914. doi:10.1063/1.1773132 CrossRefPubMedGoogle Scholar
  62. 62.
    Braun V, Gnirke H, Henning U, Rehn K (1973) Model for the structure of the shape-maintaining layer of the Escherichia coli cell envelope. J Bacteriol 114:1264–1270PubMedPubMedCentralGoogle Scholar
  63. 63.
    Reed RH, Walsby AE (1985) Changes in turgor pressure in response to increases in external NaCl concentration in the gas-vacuolate cyanobacterium Microcystis sp. Arch Microbiol 143:290–296. doi:10.1007/BF00411252 CrossRefGoogle Scholar
  64. 64.
    Koch AL, Pinette MF (1987) Nephelometric determination of turgor pressure in growing gram-negative bacteria. J Bacteriol 169:3654PubMedPubMedCentralGoogle Scholar
  65. 65.
    Cayley DS, Guttman HJ, Record MT (2000) Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys J 78:1748–1764CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lovering AL, De Castro LH, Lim D, Strynadka NCJ (2007) Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 315:1402–1405. doi:10.1126/science.1136611 CrossRefPubMedGoogle Scholar
  67. 67.
    Yuan Y, Barrett D, Zhang Y et al (2007) Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proc Natl Acad Sci 104:5348–5353. doi:10.1073/pnas.0701160104 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Perlstein DL, Wang T-SA, Doud EH et al (2010) The role of the substrate lipid in processive glycan polymerization by the peptidoglycan glycosyltransferases. J Am Chem Soc 132:48–49. doi:10.1021/ja909325m CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wise EM, Park JT (1965) Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc Natl Acad Sci U S A 54:75–81CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-d-alanyl-d-alanine. Proc Natl Acad Sci U S A 54:1133–1141CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ghuysen JM (1997) Penicillin-binding proteins. Wall peptidoglycan assembly and resistance to penicillin: facts, doubts and hopes. Int J Antimicrob Agents 8:45–60CrossRefPubMedGoogle Scholar
  72. 72.
    de Pedro MA, Schwarz U (1981) Heterogeneity of newly inserted and preexisting murein in the sacculus of Escherichia coli. Proc Natl Acad Sci U S A 78:5856–5860CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Box GEP, Muller ME (1958) A note on the generation of random normal deviates. Ann Math Stat 29:610–611. doi:10.1214/aoms/1177706645 CrossRefGoogle Scholar
  74. 74.
    Braun V (1975) Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim Biophys Acta 415:335–377CrossRefPubMedGoogle Scholar
  75. 75.
    Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a000414 PubMedPubMedCentralGoogle Scholar
  76. 76.
    Typas A, Banzhaf M, Gross CA, Vollmer W (2012) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Micro 10:123–136. doi:10.1038/nrmicro2677 Google Scholar
  77. 77.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. doi:10.1016/0263-7855(96)00018-5 CrossRefPubMedGoogle Scholar
  78. 78.
    Cho H, Uehara T, Bernhardt TG (2014) Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159:1300–1311. doi:10.1016/j.cell.2014.11.017 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Spratt BG (1975) Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci U S A 72:2999–3003CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Rueff A-S, Chastanet A, Domínguez-Escobar J et al (2014) An early cytoplasmic step of peptidoglycan synthesis is associated to MreB in Bacillus subtilis. Mol Microbiol 91:348–362. doi:10.1111/mmi.12467 CrossRefPubMedGoogle Scholar
  81. 81.
    Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74:504–528. doi:10.1128/MMBR.00021-10 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Meyer P, Gutierrez J, Pogliano K, Dworkin J (2010) Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis. Mol Microbiol 76:956–970. doi:10.1111/j.1365-2958.2010.07155.x CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Tocheva EI, Matson EG, Morris DM et al (2011) Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell 146:799–812. doi:10.1016/j.cell.2011.07.029 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Tocheva EI, López-Garrido J, Hughes HV et al (2013) Peptidoglycan transformations during Bacillus subtilis sporulation. Mol Microbiol 88:673–686. doi:10.1111/mmi.12201 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Powell AJ, Tomberg J, Deacon AM et al (2009) Crystal structures of penicillin-binding protein 2 from penicillin-susceptible and -resistant strains of Neisseria gonorrhoeae reveal an unexpectedly subtle mechanism for antibiotic resistance. J Biol Chem 284:1202–1212. doi:10.1074/jbc.M805761200 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kishida H, Unzai S, Roper DI et al (2006) Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, both in the native form and covalently linked to various antibiotics. Biochemistry (Mosc) 45:783–792. doi:10.1021/bi051533t CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lam T. Nguyen
    • 1
  • James C. Gumbart
    • 2
  • Grant J. Jensen
    • 1
  1. 1.California Institute of Technology and Howard Hughes Medical InstitutePasadenaUSA
  2. 2.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations