Advertisement

Luciferase Reporter Gene System to Detect Cell Wall Stress Stimulon Induction in Staphylococcus aureus

  • Vanina Dengler
  • Nadine McCallumEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1440)

Abstract

Luciferase reporter gene fusions provide an extremely rapid and sensitive tool for measuring the induction or repression of stress responses in bacteria. Staphylococcus aureus activates the expression of a cell wall stress stimulon (CWSS) in response to the inhibition or disruption of cell wall synthesis. The highly sensitive promoter–reporter gene fusion construct psas016p-luc+ can be used to quantify and compare any changes in CWSS expression levels and induction kinetics. Potential uses of this system include identifying and characterizing novel cell wall-targeting antibacterial agents, identifying genomic loci influencing cell envelope synthesis and detecting changes in CWSS expression that could be linked to decreased antibiotic susceptibility profiles in clinical isolates.

Key words

Cell wall stress stimulon VraTSR Staphylococcus aureus Luciferase reporter gene fusion Cell wall stress 

Notes

Acknowledgements

This work was supported by the Swiss National Science Foundation Fellowship No. P2ZHP3_151582 to V.D., and by funding from the Centre for Infectious Diseases and Microbiology—Public Health, ICPMR, Westmead Hospital to N.M.

References

  1. 1.
    Bugg TDH (1999) Bacterial peptidoglycan biosynthesis and its inhibition. In: Pinto M (ed) Comprehensive natural products chemistry. Elsevier, Oxford, pp 241–294CrossRefGoogle Scholar
  2. 2.
    Jordan S, Hutchings MI, Mascher T (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32(1):107–146CrossRefPubMedGoogle Scholar
  3. 3.
    Dengler V, Stutzmann Meier P, Heusser R, Berger-Bächi B, McCallum N (2011) Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics. BMC Microbiol 11:16CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gardete S, Wu SW, Gill S, Tomasz A (2006) Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus. Antimicrob Agents Chemother 50(10):3424–3434CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K (2003) Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49(3): 807–821CrossRefPubMedGoogle Scholar
  6. 6.
    McCallum N, Stutzmann Meier P, Heusser R, Berger-Bächi B (2011) Mutational analyses of open reading frames within the vraSR operon and their roles in the cell wall stress response of Staphylococcus aureus. Antimicrob Agents Chemother 55(4):1391–1402CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sobral RG, Ludovice AM, de Lencastre H, Tomasz A (2006) Role of murF in cell wall biosynthesis: isolation and characterization of a murF conditional mutant of Staphylococcus aureus. J Bacteriol 188(7):2543–2553CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Utaida S, Dunman PM, Macapagal D, Murphy E, Projan SJ, Singh VK, Jayaswal RK, Wilkinson BJ (2003) Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell wall stress stimulon. Microbiology 149(Pt 10):2719–2732CrossRefPubMedGoogle Scholar
  9. 9.
    Cui L, Neoh HM, Shoji M, Hiramatsu K (2009) Contribution of vraSR and graSR point mutations to vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 53(3): 1231–1234CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kato Y, Suzuki T, Ida T, Maebashi K (2010) Genetic changes associated with glycopeptide resistance in Staphylococcus aureus: predominance of amino acid substitutions in YvqF/VraSR. J Antimicrob Chemother 65(1):37–45CrossRefPubMedGoogle Scholar
  11. 11.
    Mehta S, Cuirolo AX, Plata KB, Riosa S, Silverman JA, Rubio A, Rosato RR, Rosato AE (2011) VraSR two-component regulatory system contributes to mprF-mediated decreased susceptibility to daptomycin in vivo-selected clinical strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 56(1):92–102Google Scholar
  12. 12.
    Yoo JI, Kim JW, Kang GS, Kim HS, Yoo JS, Lee YS (2013) Prevalence of amino acid changes in the yvqF, vraSR, graSR, and tcaRAB genes from vancomycin intermediate resistant Staphylococcus aureus. J Microbiol 51(2):160–165. doi: 10.1007/s12275-013-3088-7 CrossRefPubMedGoogle Scholar
  13. 13.
    Blake KL, O'Neill AJ, Mengin-Lecreulx D, Henderson PJ, Bostock JM, Dunsmore CJ, Simmons KJ, Fishwick CW, Leeds JA, Chopra I (2009) The nature of Staphylococcus aureus MurA and MurZ and approaches for detection of peptidoglycan biosynthesis inhibitors. Mol Microbiol 72(2):335–343CrossRefPubMedGoogle Scholar
  14. 14.
    Sobral RG, Jones AE, Des Etages SG, Dougherty TJ, Peitzsch RM, Gaasterland T, Ludovice AM, de Lencastre H, Tomasz A (2007) Extensive and genome-wide changes in the transcription profile of Staphylococcus aureus induced by modulating the transcription of the cell wall synthesis gene murF. J Bacteriol 189(6):2376–2391CrossRefPubMedGoogle Scholar
  15. 15.
    Sengupta M, Jain V, Wilkinson BJ, Jayaswal RK (2012) Chromatin immunoprecipitation identifies genes under direct VraSR regulation in Staphylococcus aureus. Can J Microbiol 58(6):703–708. doi: 10.1139/w2012-043 CrossRefPubMedGoogle Scholar
  16. 16.
    Pinho MG, de Lencastre H, Tomasz A (2001) An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc Natl Acad Sci U S A 98(19):10886–10891CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang QM, Peery RB, Johnson RB, Alborn WE, Yeh WK, Skatrud PL (2001) Identification and characterization of a monofunctional glycosyltransferase from Staphylococcus aureus. J Bacteriol 183(16):4779–4785. doi: 10.1128/JB.183.16.4779-4785.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fan X, Liu Y, Smith D, Konermann L, Siu KW, Golemi-Kotra D (2007) Diversity of penicillin-binding proteins. Resistance factor FmtA of Staphylococcus aureus. J Biol Chem 282(48): 35143–35152CrossRefPubMedGoogle Scholar
  19. 19.
    Oshida T, Sugai M, Komatsuzawa H, Hong YM, Suginaka H, Tomasz A (1995) A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-l-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci U S A 92(1):285–289CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kawai Y, Marles-Wright J, Cleverley RM, Emmins R, Ishikawa S, Kuwano M, Heinz N, Bui NK, Hoyland CN, Ogasawara N, Lewis RJ, Vollmer W, Daniel RA, Errington J (2011) A widespread family of bacterial cell wall assembly proteins. EMBO J 30(24):4931–4941CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Over B, Heusser R, McCallum N, Schulthess B, Kupferschmied P, Gaiani JM, Sifri CD, Berger-Bächi B, Stutzmann Meier P (2011) LytR-CpsA-Psr proteins in Staphylococcus aureus display partial functional redundancy and the deletion of all three severely impairs septum placement and cell separation. FEMS Microbiol Lett 320(2):142–151CrossRefPubMedGoogle Scholar
  22. 22.
    McCallum N, Spehar G, Bischoff M, Berger-Bächi B (2006) Strain dependence of the cell wall-damage induced stimulon in Staphylococcus aureus. Biochim Biophys Acta 1760(10):1475–1481CrossRefPubMedGoogle Scholar
  23. 23.
    Boyle-Vavra S, Yin S, Jo DS, Montgomery CP, Daum RS (2013) VraT/YvqF is required for methicillin resistance and activation of the VraSR regulon in Staphylococcus aureus. Antimicrob Agents Chemother 57(1):83–95. doi: 10.1128/AAC.01651-12 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dengler V, McCallum N, Kiefer P, Christen P, Patrignani A, Vorholt JA, Berger-Bächi B, Senn MM (2013) Mutation in the c-di-AMP cyclase dacA affects fitness and resistance of methicillin resistant Staphylococcus aureus. PLoS One 8(8):e73512. doi: 10.1371/journal.pone.0073512 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dengler V, Stutzmann Meier P, Heusser R, Kupferschmied P, Fazekas J, Friebe S, Burger Staufer S, Majcherczyk PA, Moreillon P, Berger-Bächi B, McCallum N (2012) Deletion of hypothetical wall teichoic acid ligases in Staphylococcus aureus activates the cell wall stress response. FEMS Microbiol Lett 333(2):109–120CrossRefPubMedGoogle Scholar
  26. 26.
    Campbell J, Singh AK, Swoboda JG, Gilmore MS, Wilkinson BJ, Walker S (2012) An antibiotic that inhibits a late step in wall teichoic acid biosynthesis induces the cell wall stress stimulon in Staphylococcus aureus. Antimicrob Agents Chemother 56(4):1810–1820CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rossi J, Bischoff M, Wada A, Berger-Bächi B (2003) MsrR, a putative cell envelope-associated element involved in Staphylococcus aureus sarA attenuation. Antimicrob Agents Chemother 47(8):2558–2564CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Katayama Y, Zhang HZ, Chambers HF (2003) Effect of disruption of Staphylococcus aureus PBP4 gene on resistance to beta-lactam antibiotics. Microb Drug Resist 9(4): 329–336CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUSA
  2. 2.Marie Bashir Institute for Infectious Diseases and BiosecurityUniversity of Sydney, Westmead HospitalWestmeadAustralia

Personalised recommendations