Large-Scale Overproduction and Purification of Recombinant Histone Deacetylase 8 (HDAC8) from the Human-Pathogenic Flatworm Schistosoma mansoni

  • Martin Marek
  • Tajith B. Shaik
  • Sylvie Duclaud
  • Raymond J. Pierce
  • Christophe RomierEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1436)


Epigenetic mechanisms underlie the morphological transformations and shifts in virulence of eukaryotic pathogens. The targeting of epigenetics-driven cellular programs thus represents an Achilles’ heel of human parasites. Today, zinc-dependent histone deacetylases (HDACs) belong to the most explored epigenetic drug targets in eukaryotic parasites. Here, we describe an optimized protocol for the large-scale overproduction and purification of recombinant smHDAC8, an emerging epigenetic drug target in the multicellular human-pathogenic flatworm Schistosoma mansoni. The strategy employs the robustness of recombinant expression in Escherichia coli together with initial purification through a poly-histidine affinity tag that can be removed by the thrombin protease. This protocol is divided into two steps: (1) large-scale production of smHDAC8 in E. coli, and (2) purification of the target smHDAC8 protein through multiple purification steps.

Key words

Histone deacetylase Enzyme Recombinant expression Purification Schistosoma 



This work and the authors of this manuscript have been supported by funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreements nos. 241865 (SEtTReND) and 602080 (A-ParaDDisE). The authors are supported by institutional funds from the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM), the Université de Strasbourg and the Université de Lille 2, the French Infrastructure for Integrated Structural Biology (FRISBI; ANR-10-INSB-05-01), and by Instruct as part of the European Strategy Forum on Research Infrastructures (ESFRI).


  1. 1.
    Brown M (2011) Schistosomiasis. Clin Med 11(5):479–482CrossRefGoogle Scholar
  2. 2.
    Ross A, Bartley P, Sleigh A et al (2002) Schistosomiasis. N Engl J Med 346(16):1212–1220CrossRefPubMedGoogle Scholar
  3. 3.
    Gray D, Ross A, Li Y, Mcmanus D (2011) Diagnosis and management of schistosomiasis. BMJ 342:2651CrossRefGoogle Scholar
  4. 4.
    Dömling A, Khoury K (2010) Praziquantel and schistosomiasis. ChemMedChem 5(9):1420–1434CrossRefPubMedGoogle Scholar
  5. 5.
    Doenhoff M, Cioli D, Utzinger J (2008) Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 21:659–667CrossRefPubMedGoogle Scholar
  6. 6.
    Doenhoff M, Kusel J, Coles G, Cioli D (2002) Resistance of Schistosoma mansoni to praziquantel: is there a problem? Trans R Soc Trop Med Hyg 96(5):465–469CrossRefPubMedGoogle Scholar
  7. 7.
    Li Z, Zhu W (2014) Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications. Int J Biol Sci 10(7):757–770CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Campbell R, Tummino P (2014) Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J Clin Investig 124(1):64–69CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    West A, Johnstone R (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Investig 124(1):30–39CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Marek M, Kannan S, Hauser A et al (2013) Structural basis for the inhibition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosoma mansoni. PLoS Pathog 9(9), e100364CrossRefGoogle Scholar
  11. 11.
    Stolfa D, Marek M, Lancelot J et al (2014) Molecular basis for the antiparasitic activity of a mercaptoacetamide derivative that inhibits histone deacetylase 8 (HDAC8) from the human pathogen Schistosoma mansoni. J Mol Biol 426(20):3442–3453CrossRefPubMedGoogle Scholar
  12. 12.
    Kannan S, Melesina J, Hauser A et al (2014) Discovery of inhibitors of Schistosoma mansoni HDAC8 by combining homology modeling, virtual screening, and in vitro validation. J Chem Inf Model 54(10):3005–3019CrossRefPubMedGoogle Scholar
  13. 13.
    Diebold M-L, Fribourg S, Koch M, Metzger T, Romier C (2011) Deciphering correct strategies for multiprotein complex assembly by co-expression: application to complexes as large as the histone octamer. J Struct Biol 175(2):178–188CrossRefPubMedGoogle Scholar
  14. 14.
    Olson D, Udeshi N, Wolfson N et al (2014) An unbiased approach to identify endogenous substrates of “histone” deacetylase 8. ACS Chem Biol 9(10):2210–2216CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Martin Marek
    • 1
  • Tajith B. Shaik
    • 1
  • Sylvie Duclaud
    • 1
  • Raymond J. Pierce
    • 2
  • Christophe Romier
    • 1
    Email author
  1. 1.Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)Université de Strasbourg (UDS), CNRS, INSERMIllkirch CedexFrance
  2. 2.Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204Université de Lille, Institut Pasteur de LilleLille CedexFrance

Personalised recommendations