Experimental Models of Anxiety for Drug Discovery and Brain Research

  • Peter C. Hart
  • Carisa L. Bergner
  • Amanda N. Smolinsky
  • Brett D. Dufour
  • Rupert J. Egan
  • Justin L. LaPorte
  • Allan V. KalueffEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1438)


Animal models have been vital to recent advances in experimental neuroscience, including the modeling of common human brain disorders such as anxiety, depression, and schizophrenia. As mice express robust anxiety-like behaviors when exposed to stressors (e.g., novelty, bright light, or social confrontation), these phenotypes have clear utility in testing the effects of psychotropic drugs. Of specific interest is the extent to which mouse models can be used for the screening of new anxiolytic drugs and verification of their possible applications in humans. To address this problem, the present chapter will review different experimental models of mouse anxiety and discuss their utility for testing anxiolytic and anxiogenic drugs. Detailed protocols will be provided for these paradigms, and possible confounds will be addressed accordingly.

Key words

Anxiety Experimental animal models Anxiolytic drugs Anxiogenic drugs Biological psychiatry Exploration 



This work was supported by the NARSAD YI Award to AVK, and by Stress Physiology and Research Center (SPaRC) of Georgetown University Medical School. AVK is the President of the International Stress and Behavior Society (ISBS, He is supported by Guangdong Ocean University, St. Petersburg State University (internal grant and Ural Federal University (Government of Russian Federation Act 211, contract 02-A03.21.0006).


  1. 1.
    Warnick JE, Sufka KJ (2008) Animal models of anxiety: examining their validity, utility, and ethical characteristics. In: Kalueff AV, LaPorte JL (eds) Behavioral models in stress research. Nova Biomedical Books, New York, pp 55–71Google Scholar
  2. 2.
    Flint J (2003) Animal models of anxiety and their molecular dissection. Semin Cell Dev Biol 14:37–42CrossRefPubMedGoogle Scholar
  3. 3.
    Ohl F (2005) Animal models of anxiety. Handb Exp Pharmacol 1:35–69Google Scholar
  4. 4.
    Sousa N, Almeida OF, Wotjak CT (2006) A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes Brain Behav 5(Suppl 2):5–24CrossRefPubMedGoogle Scholar
  5. 5.
    Borsini F, Podhorna J, Marazziti D (2002) Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology (Berl) 163:121–141CrossRefGoogle Scholar
  6. 6.
    De Boer SF, Koolhaas JM (2003) Defensive burying in rodents: ethology, neurobiology and psychopharmacology. Eur J Pharmacol 463:145–161CrossRefPubMedGoogle Scholar
  7. 7.
    Falls WA, Carlson S, Turner JG, Willott JF (1997) Fear-potentiated startle in two strains of inbred mice. Behav Neurosci 111:855–861CrossRefPubMedGoogle Scholar
  8. 8.
    Kalueff AV, Aldridge JW, LaPorte JL, Murphy DL, Tuohimaa P (2007) Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc 2:2538–2544CrossRefPubMedGoogle Scholar
  9. 9.
    Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Deacon RM (2006) Housing, husbandry and handling of rodents for behavioral experiments. Nat Protoc 1:936–946CrossRefPubMedGoogle Scholar
  11. 11.
    Martinez JA, Francis G, Liu W, Pradzinsky N, Fine J et al (2008) Intranasal delivery of insulin and a nitric oxide synthase inhibitor in an experimental model of amyotrophic lateral sclerosis. Neuroscience 157(4):908–925CrossRefPubMedGoogle Scholar
  12. 12.
    Ito N, Nagai T, Oikawa T, Yamada H, Hanawa T (2008) Antidepressant-like effect of l-perillaldehyde in stress-induced depression-like model mice through regulation of the olfactory nervous system. Evid Based Complement Alternat Med 2011:512697Google Scholar
  13. 13.
    De Souza Silva M, Topic B, Huston J, Mattern C (2008) Intranasal dopamine application increases dopaminergic activity in the neostriatum and nucleus accumbens and enhances motor activity in the open field. Synapse 62:176–184CrossRefPubMedGoogle Scholar
  14. 14.
    Buddenberg TE, Topic B, Mahlberg ED, de Souza Silva MA, Huston JP et al (2008) Behavioral actions of intranasal application of dopamine: effects on forced swimming, elevated plus-maze and open field parameters. Neuropsychobiology 57:70–79CrossRefPubMedGoogle Scholar
  15. 15.
    Hagenbuch N, Feldon J, Yee BK (2006) Use of the elevated plus-maze test with opaque or transparent walls in the detection of mouse strain differences and the anxiolytic effects of diazepam. Behav Pharmacol 17:31–41CrossRefPubMedGoogle Scholar
  16. 16.
    Karl T, Duffy L, Herzog H (2008) Behavioural profile of a new mouse model for NPY deficiency. Eur J Neurosci 28:173–180CrossRefPubMedGoogle Scholar
  17. 17.
    Archer T, Fredriksson A, Lewander T, Soderberg U (1987) Marble burying and spontaneous motor activity in mice: interactions over days and the effect of diazepam. Scand J Psychol 28:242–249CrossRefPubMedGoogle Scholar
  18. 18.
    Deacon RM (2006) Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat Protoc 1:122–124CrossRefPubMedGoogle Scholar
  19. 19.
    Nicolas LB, Kolb Y, Prinssen EP (2006) A combined marble burying-locomotor activity test in mice: a practical screening test with sensitivity to different classes of anxiolytics and antidepressants. Eur J Pharmacol 547:106–115CrossRefPubMedGoogle Scholar
  20. 20.
    Njung'e K, Handley SL (1991) Evaluation of marble-burying behavior as a model of anxiety. Pharmacol Biochem Behav 38:63–67CrossRefPubMedGoogle Scholar
  21. 21.
    Mikics E, Baranyi J, Haller J (2008) Rats exposed to traumatic stress bury unfamiliar objects—a novel measure of hyper-vigilance in PTSD models? Physiol Behav 94:341–348CrossRefPubMedGoogle Scholar
  22. 22.
    Halberstadt AL, Geyer MA (2008) Habituation and sensitization of acoustic startle: opposite influences of dopamine D(1) and D(2)-family receptors. Neurobiol Learn Mem 92(2):243–248CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kalueff AV, Keisala T, Minasyan A, Kumar SR, LaPorte JL et al (2008) The regular and light-dark Suok tests of anxiety and sensorimotor integration: utility for behavioral characterization in laboratory rodents. Nat Protoc 3:129–136CrossRefPubMedGoogle Scholar
  24. 24.
    Kalueff AV, Tuohimaa P (2005) The Suok (“ropewalking”) murine test of anxiety. Brain Res Brain Res Protoc 14:87–99CrossRefPubMedGoogle Scholar
  25. 25.
    Bouwknecht JA, Olivier B, Paylor RE (2007) The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: a review of pharmacological and genetic studies in the mouse. Neurosci Biobehav Rev 31:41–59CrossRefGoogle Scholar
  26. 26.
    Kliethermes CL, Crabbe JC (2006) Pharmacological and genetic influences on hole-board behaviors in mice. Pharmacol Biochem Behav 85:57–65CrossRefPubMedGoogle Scholar
  27. 27.
    Yang M, Augustsson H, Markham CM, Hubbard DT, Webster D et al (2004) The rat exposure test: a model of mouse defensive behaviors. Physiol Behav 81:465–473CrossRefPubMedGoogle Scholar
  28. 28.
    Powell SB, Geyer MA, Gallagher D, Paulus MP (2004) The balance between approach and avoidance behaviors in a novel object exploration paradigm in mice. Behav Brain Res 152:341–349CrossRefPubMedGoogle Scholar
  29. 29.
    Kalueff AV, Murphy DL (2007) The importance of cognitive phenotypes in experimental modeling of animal anxiety and depression. Neural Plasticity 2007:52087PubMedPubMedCentralGoogle Scholar
  30. 30.
    Broekkamp CL, Rijk HW, Joly-Gelouin D, Lloyd KL (1986) Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur J Pharmacol 126:223–229CrossRefPubMedGoogle Scholar
  31. 31.
    Bruins Slot LA, Bardin L, Auclair AL, Depoortere R, Newman-Tancredi A (2008) Effects of antipsychotics and reference monoaminergic ligands on marble burying behavior in mice. Behav Pharmacol 19:145–152CrossRefPubMedGoogle Scholar
  32. 32.
    Bespalov AY, van Gaalen MM, Sukhotina IA, Wicke K, Mezler M et al (2008) Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341495, in animal models of anxiety and depression. Eur J Pharmacol 592(1-3):96–102CrossRefPubMedGoogle Scholar
  33. 33.
    Gordon CJ (2004) Effect of cage bedding on temperature regulation and metabolism of group-housed female mice. Comp Med 54:63–68PubMedGoogle Scholar
  34. 34.
    Li X, Morrow D, Witkin JM (2006) Decreases in nestlet shredding of mice by serotonin uptake inhibitors: comparison with marble burying. Life Sci 78:1933–1939CrossRefPubMedGoogle Scholar
  35. 35.
    Paylor R, Crawley JN (1997) Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology (Berl) 132:169–180CrossRefGoogle Scholar
  36. 36.
    Bolivar VJ, Walters SR, Phoenix JL (2007) Assessing autism-like behavior in mice: variations in social interactions among inbred strains. Behav Brain Res 176:21–26CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Feng YQ, Zhou ZY, He X, Wang H, Guo XL et al (2008) Dysbindin deficiency in sandy mice causes reduction of snapin and displays behaviors related to schizophrenia. Schizophr Res 106(2-3):218–228CrossRefPubMedGoogle Scholar
  38. 38.
    Olivier B, Zethof T, Pattij T, van Boogaert M, van Oorschot R et al (2003) Stress-induced hyperthermia and anxiety: pharmacological validation. Eur J Pharmacol 463:117–132CrossRefPubMedGoogle Scholar
  39. 39.
    Kort WJ, Hekking-Weijma JM, TenKate MT, Sorm V, VanStrik R (1998) A microchip implant system as a method to determine body temperature of terminally ill rats and mice. Laboratory Animals 32(3):260–269CrossRefPubMedGoogle Scholar
  40. 40.
    Bouwknecht JA, Paylor R (2002) Behavioral and physiological mouse assays for anxiety: a survey in nine mouse strains. Behav Brain Res 136:489–501CrossRefPubMedGoogle Scholar
  41. 41.
    Klebaur JE, Bardo MT (1999) The effects of anxiolytic drugs on novelty-induced place preference. Behav Brain Res 101:51–57CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Peter C. Hart
    • 1
  • Carisa L. Bergner
    • 1
  • Amanda N. Smolinsky
    • 1
  • Brett D. Dufour
    • 2
  • Rupert J. Egan
    • 1
  • Justin L. LaPorte
    • 3
  • Allan V. Kalueff
    • 1
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    Email author
  1. 1.Department of Physiology and BiophysicsGeorgetown University Medical SchoolWashington, DCUSA
  2. 2.Department of Animal SciencesPurdue UniversityWest LafayetteUSA
  3. 3.Stress Physiology and Research Center (SPaRC)Georgetown University Medical CenterWashington, DCUSA
  4. 4.Department of PharmacologyTulane University Medical CenterNew OrleansUSA
  5. 5.Department of Physiology and BiophysicsGeorgetown University Medical SchoolWashington, DCUSA
  6. 6.The International Stress and Behavior Society (ISBS) and ZENEREI Research CenterSlidellUSA
  7. 7.Research Institute of Marine Drugs and Nutrition, College of Food Science and TechnologyGuangdong OceanUniversityZhanjiangChina
  8. 8.Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
  9. 9.Institutes of Chemical Technology and Natural SciencesUral Federal UniversityEkaterinburgRussia

Personalised recommendations