Mouse Models for Studying Depression-Like States and Antidepressant Drugs

  • Carisa L. Bergner
  • Amanda N. Smolinsky
  • Peter C. Hart
  • Brett D. Dufour
  • Rupert J. Egan
  • Justin L. LaPorte
  • Allan V. Kalueff
Part of the Methods in Molecular Biology book series (MIMB, volume 1438)

Abstract

Depression is a common psychiatric disorder, with diverse symptoms and high comorbidity with other brain dysfunctions. Due to this complexity, little is known about the neural and genetic mechanisms involved in depression pathogenesis. In a large proportion of patients, current antidepressant treatments are often ineffective and/or have undesirable side effects, fueling the search for more effective drugs. Animal models mimicking various symptoms of depression are indispensable in studying the biological mechanisms of this disease. Here, we summarize several popular methods for assessing depression-like symptoms in mice, and their utility in screening antidepressant drugs.

Key words

Depression Animal models Antidepressant drug screening Despair Anhedonia Chronic stress 

References

  1. 1.
    Wong ML, Licinio J (2004) From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 3:136–151CrossRefPubMedGoogle Scholar
  2. 2.
    Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790CrossRefPubMedGoogle Scholar
  3. 3.
    Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245CrossRefPubMedGoogle Scholar
  4. 4.
    Cryan JF, Mombereau C (2004) In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9:326–357CrossRefPubMedGoogle Scholar
  5. 5.
    Cryan JF, Slattery DA (2007) Animal models of mood disorders: recent developments. Curr Opin Psychiatry 20:1–7CrossRefPubMedGoogle Scholar
  6. 6.
    Fava M, Davidson KG (1996) Definition and epidemiology of treatment-resistant depression. Psychiatr Clin North Am 19:179–200CrossRefPubMedGoogle Scholar
  7. 7.
    Malatynska E, Rapp R, Harrawood D, Tunnicliff G (2005) Submissive behavior in mice as a test for antidepressant drug activity. Pharmacol Biochem Behav 82:306–313CrossRefPubMedGoogle Scholar
  8. 8.
    Kalueff AV, Laporte JL, Murphy DL, Sufka K (2008) Hybridizing behavioral models: a possible solution to some problems in neurophenotyping research? Prog Neuropsychopharmacol Biol Psychiatry 32:1172–1178CrossRefPubMedGoogle Scholar
  9. 9.
    Kalueff AV, Murphy DL (2007) The Importance of cognitive phenotypes in experimental modeling of animal anxiety and depression. Neural Plast 2007:52087PubMedPubMedCentralGoogle Scholar
  10. 10.
    Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Kupfer DJ, Bloom F (eds) Psychopharmacology the fourth generation of progress. Raven Press, New York, pp 787–798Google Scholar
  11. 11.
    Frazer A, Morilak DA (2005) What should animal models of depression model? Neurosci Biobehav Rev 29:515–523CrossRefPubMedGoogle Scholar
  12. 12.
    Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329CrossRefGoogle Scholar
  13. 13.
    Crowley JJ, Jones MD, O'Leary OF, Lucki I (2004) Automated tests for measuring the effects of antidepressants in mice. Pharmacol Biochem Behav 78:269–274CrossRefPubMedGoogle Scholar
  14. 14.
    Juszczak GR, Sliwa AT, Wolak P, Tymosiak-Zielinska A, Lisowski P et al (2006) The usage of video analysis system for detection of immobility in the tail suspension test in mice. Pharmacol Biochem Behav 85:332–338CrossRefPubMedGoogle Scholar
  15. 15.
    Jackson-Laboratory (2008) Mouse genome informatics. http://www.informatics.jax.org/
  16. 16.
    Palanza P (2001) Animal models of anxiety and depression: how are females different? Neurosci Biobehav Rev 25:219–233CrossRefPubMedGoogle Scholar
  17. 17.
    Deacon RM (2006) Housing, husbandry and handling of rodents for behavioral experiments. Nat Protoc 1:936–946CrossRefPubMedGoogle Scholar
  18. 18.
    Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370CrossRefGoogle Scholar
  19. 19.
    Kos T, Legutko B, Danysz W, Samoriski G, Popik P (2006) Enhancement of antidepressant-like effects but not brain-derived neurotrophic factor mRNA expression by the novel N-methyl-D-aspartate receptor antagonist neramexane in mice. J Pharmacol Exp Ther 318:1128–1136. Google Scholar
  20. 20.
    Bai F, Li X, Clay M, Lindstrom T, Skolnick P (2001) Intra- and interstrain differences in models of “behavioral despair”. Pharmacol Biochem Behav 70:187–192CrossRefPubMedGoogle Scholar
  21. 21.
    Bourin M, Chenu F, Ripoll N, David DJ (2005) A proposal of decision tree to screen putative antidepressants using forced swim and tail suspension tests. Behav Brain Res 164:266–269CrossRefPubMedGoogle Scholar
  22. 22.
    Hunsberger JG, Newton SS, Bennett AH, Duman CH, Russell DS et al (2007) Antidepressant actions of the exercise-regulated gene VGF. Nat Med 13:1476–1482CrossRefPubMedGoogle Scholar
  23. 23.
    Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29:2007–2017CrossRefPubMedGoogle Scholar
  24. 24.
    Jayatissa MN, Bisgaard CF, West MJ, Wiborg O (2008) The number of granule cells in rat hippocampus is reduced after chronic mild stress and re-established after chronic escitalopram treatment. Neuropharmacology 54:530–541CrossRefPubMedGoogle Scholar
  25. 25.
    Xu Q, Yi LT, Pan Y, Wang X, Li YC et al (2008) Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officinalis in stressed rodents. Prog Neuropsychopharmacol Biol Psychiatry 32:715–725CrossRefPubMedGoogle Scholar
  26. 26.
    Zhao Z, Wang W, Guo H, Zhou D (2008) Antidepressant-like effect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats. Behav Brain Res 194:108–113.Google Scholar
  27. 27.
    Perona MT, Waters S, Hall FS, Sora I, Lesch KP et al (2008) Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions. Behav Pharmacol 19:566–574CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Luo DD, An SC, Xhang X (2008) Involvement of hippocampal serotonin and neuropeptide Y in depression induced by chronic unpredicted mild stress. Brain Res Bull 77:8–12CrossRefPubMedGoogle Scholar
  29. 29.
    Piato AL, Detanico BC, Jesus JF, Lhullier FL, Nunes DS et al (2008) Effects of Marapuama in the chronic mild stress model: further indication of antidepressant properties. J Ethnopharmacol 118:300–304CrossRefPubMedGoogle Scholar
  30. 30.
    Yalcin I, Aksu F, Belzung C (2005) Effects of desipramine and tramadol in a chronic mild stress model in mice are altered by yohimbine but not by pindolol. Eur J Pharmacol 514:165–174CrossRefPubMedGoogle Scholar
  31. 31.
    Yalcin I, Aksu F, Bodard S, Chalon S, Belzung C (2007) Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: possible involvement of the noradrenergic system. Behav Pharmacol 18:623–631CrossRefPubMedGoogle Scholar
  32. 32.
    Ducottet C, Griebel G, Belzung C (2003) Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 27:6CrossRefGoogle Scholar
  33. 33.
    Zhang L, Barrett JE (1990) Interactions of corticotropin-releasing factor with antidepressant and anxiolytic drugs: behavioral studies with pigeons. Biol Psychiatry 27:953–967CrossRefPubMedGoogle Scholar
  34. 34.
    Burne TH, Johnston AN, McGrath JJ, Mackay-Sim A (2006) Swimming behaviour and post-swimming activity in vitamin D receptor knockout mice. Brain Res Bull 69:74–78CrossRefPubMedGoogle Scholar
  35. 35.
    Harkin A, Houlihan DD, Kelly JP (2002) Reduction in preference for saccharin by repeated unpredictable stress in mice and its prevention by imipramine. J Psychopharmacol 16:115–123CrossRefPubMedGoogle Scholar
  36. 36.
    Willner P, Moreau JL, Nielsen CK, Papp M, Sluzewska A (1996) Decreased hedonic responsiveness following chronic mild stress is not secondary to loss of body weight. Physiol Behav 60:129–134CrossRefPubMedGoogle Scholar
  37. 37.
    Pothion S, Bizot JC, Trovero F, Belzung C (2004) Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res 155:135–146CrossRefPubMedGoogle Scholar
  38. 38.
    Mineur YS, Prasol DJ, Belzung C, Crusio WE (2003) Agonistic behavior and unpredictable chronic mild stress in mice. Behav Genet 33:513–519CrossRefPubMedGoogle Scholar
  39. 39.
    Greer JM, Capecchi MR (2002) Hoxb8 is required for normal grooming behavior in mice. Neuron 33:23–34CrossRefPubMedGoogle Scholar
  40. 40.
    Kalueff AV, Keisala T, Minasyan A, Kuuslahti M, Miettinen S et al (2006) Behavioural anomalies in mice evoked by “Tokyo” disruption of the vitamin D receptor gene. Neurosci Res 54:254–260CrossRefPubMedGoogle Scholar
  41. 41.
    Garner JP, Weisker SM, Dufour B, Mench JA (2004) Barbering (fur and whisker trimming) by laboratory mice as a model of human trichotillomania and obsessive-compulsive spectrum disorders. Comp Med 54:216–224PubMedGoogle Scholar
  42. 42.
    Kalueff AV, Minasyan A, Keisala T, Shah ZH, Tuohimaa P (2006) Hair barbering in mice: implications for neurobehavioural research. Behav Processes 71:8–15CrossRefPubMedGoogle Scholar
  43. 43.
    Sarna JR, Dyck RH, Whishaw IQ (2000) The Dalila effect: C57BL/6 mice barber whiskers by plucking. Behav Brain Res 108:39–45CrossRefPubMedGoogle Scholar
  44. 44.
    Garner JP, Dufour B, Gregg LE, Weisker SM, Mench JA (2004) Social and husbandry factors affecting the prevalence and severity of barbering (“whisker-trimming”) by laboratory mice. Appl Anim Lab Sci 89:263–282CrossRefGoogle Scholar
  45. 45.
    Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315–322CrossRefGoogle Scholar
  46. 46.
    Mayorga AJ, Lucki I (2001) Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacology (Berl) 155:110–112CrossRefGoogle Scholar
  47. 47.
    Crowley JJ, Blendy JA, Lucki I (2005) Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology (Berl) 183:257–264CrossRefGoogle Scholar
  48. 48.
    Jones SM, Jones TA, Johnson KR, Yu H, Erway LC et al (2006) A comparison of vestibular and auditory phenotypes in inbred mouse strains. Brain Res 1091:40–46CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rauskolb S (2008) Brain-derived neurotrophic factor: generation and characterization of adult mice lacking BDNF in the adult brain, p 91. University of Basel, Basel, GermanyGoogle Scholar
  50. 50.
    Paylor R, Hirotsune S, Gambello MJ, Yuva-Paylor L, Crawley JN et al (1999) Impaired learning and motor behavior in heterozygous Pafah1b1 (Lis1) mutant mice. Learn Mem 6:521–537CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Carisa L. Bergner
    • 1
  • Amanda N. Smolinsky
    • 1
  • Peter C. Hart
    • 1
  • Brett D. Dufour
    • 2
  • Rupert J. Egan
    • 1
  • Justin L. LaPorte
    • 1
    • 3
  • Allan V. Kalueff
    • 1
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  1. 1.Department of Physiology and BiophysicsGeorgetown University Medical SchoolWashington, DCUSA
  2. 2.Department of Animal SciencesPurdue UniversityWest LafayetteUSA
  3. 3.Stress Physiology and Research Center (SPaRC)Georgetown University Medical CenterWashington, DCUSA
  4. 4.Department of PharmacologyTulane University Medical CenterNew OrleansUSA
  5. 5.Department of Physiology and BiophysicsGeorgetown University Medical SchoolWashington, DCUSA
  6. 6.Research Institute for Marine Drugs and NutritionCollege of Food Science and TechnologyZhanjiangChina
  7. 7.Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
  8. 8.ZENEREI Research CenterSlidellUSA
  9. 9.Chemicotechnological Institute Ural Federal State University EkaterinburgRussia

Personalised recommendations