Advertisement

Enzymatic Modification of 5′-Capped RNA and Subsequent Labeling by Click Chemistry

  • Josephin M. Holstein
  • Daniela Stummer
  • Andrea RentmeisterEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1428)

Abstract

The combination of enzymatic modification and bioorthogonal click chemistry provides a powerful approach for site-specific labeling of different classes of biomolecules in vitro and even in cellular environments. Herein, we describe a chemoenzymatic method to site specifically label 5′-capped model mRNAs independent of their sequence. A trimethylguanosine synthase was engineered to introduce alkyne, azido, or 4-vinylbenzyl moieties to the 5′-cap. These functional groups were then used for labeling using typical click reactions, such as the azide-alkyne cycloaddition or the tetrazine ligation.

Key words

RNA Cap Chemoenzymatic Click chemistry AdoMet analog RNA modification RNA labeling 

Notes

Acknowledgments

A. R. gratefully acknowledges financial support from the Emmy Noether-Programme of the Deutsche Forschungsgemeinschaft (RE 2796/2-1) and the Fonds der Chemischen Industrie. This work was partly supported by the Deutsche Forschungsgemeinschaft, DFG EXC 1003 Cells in Motion—Cluster of Excellence, Münster, Germany. We thank Prof. Hahn (University of Hamburg) for providing the DNA template for transcription. We would like to thank Prof. Birgit Dräger (University of Halle, Germany) for plasmids encoding LuxS and MTAN. J. M. H. thanks the Fonds der Chemischen Industrie for a doctoral fellowship.

References

  1. 1.
    Januschke J, Gervais L, Dass S et al (2002) Polar transport in the Drosophilia oocyte requires Dynein and Kinesin I cooperation. Curr Biol 12:1971–1981CrossRefPubMedGoogle Scholar
  2. 2.
    King ML, Messitt TJ, Mowry KL (2005) Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 97:19–33CrossRefPubMedGoogle Scholar
  3. 3.
    Melton DA (1987) Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature 328:80–82CrossRefPubMedGoogle Scholar
  4. 4.
    Bertrand E, Chartrand P, Schaefer M et al (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445CrossRefPubMedGoogle Scholar
  5. 5.
    Condeelis J, Singer RH (2005) How and why does beta-actin mRNA target? Biol Cell 97:97–110CrossRefPubMedGoogle Scholar
  6. 6.
    Mili S, Moissoglu K, Macara IG (2008) Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 453:115–119CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127:49–58CrossRefPubMedGoogle Scholar
  8. 8.
    Lin AC, Holt CE (2007) Local translation and directional steering in axons. EMBO J 26:3729–3736CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Politz JC, Browne ES, Wolf DE et al (1998) Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc Natl Acad Sci U S A 95:6043–6048CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rinne JS, Kaminski TP, Kubitscheck U et al (2013) Light-inducible molecular beacons for spatio-temporally highly defined activation. Chem Commun 49:5375–5377CrossRefGoogle Scholar
  11. 11.
    Kummer S, Knoll A, Socher E et al (2012) PNA FIT-probes for the dual color imaging of two viral mRNA targets in influenza H1N1 infected live cells. Bioconjug Chem 23:2051–2060CrossRefPubMedGoogle Scholar
  12. 12.
    Strack RL, Disney MD, Jaffrey SR (2013) A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat Methods 10:1219–1224CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yoshimura H, Inaguma A, Yamada T et al (2012) Fluorescent probes for imaging endogenous beta-actin mRNA in living cells using fluorescent protein-tagged pumilio. ACS Chem Biol 7:999–1005CrossRefPubMedGoogle Scholar
  14. 14.
    Ozawa T, Natori Y, Sato M et al (2007) Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat Methods 4:413–419PubMedGoogle Scholar
  15. 15.
    Kellermann SJ, Rath AK, Rentmeister A (2013) Tetramolecular fluorescence complementation for detection of specific RNAs in vitro. Chembiochem 14:200–204CrossRefPubMedGoogle Scholar
  16. 16.
    Lionnet T, Czaplinski K, Darzacq X et al (2011) A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8:165–170CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jao CY, Salic A (2008) Exploring RNA transcription and turnover in vivo by using click chemistry. Proc Natl Acad Sci U S A 105:15779–15784CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schulz D, Holstein JM, Rentmeister A (2013) A chemo-enzymatic approach for site-specific modification of the RNA cap. Angew Chem Int Ed Engl 52:7874–7878CrossRefPubMedGoogle Scholar
  19. 19.
    Motorin Y, Burhenne J, Teimer R et al (2011) Expanding the chemical scope of RNA: methyltransferases to site-specific alkynylation of RNA for click labeling. Nucleic Acids Res 39:1943–1952CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tomkuviene M, Clouet-D'orval B, Cerniauskas I et al (2012) Programmable sequence-specific click-labeling of RNA using archaeal box C/D RNP methyltransferases. Nucleic Acids Res 40:6765–6773CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Seidu-Larry S, Krieg B, Hirsch M et al (2012) A modified guanosine phosphoramidite for click functionalization of RNA on the sugar edge. Chem Commun 48:11014–11016CrossRefGoogle Scholar
  22. 22.
    Aigner M, Hartl M, Fauster K et al (2011) Chemical synthesis of site-specifically 2′-azido-modified RNA and potential applications for bioconjugation and RNA interference. Chembiochem 12:47–51CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pyka AM, Domnick C, Braun F et al (2014) Diels-Alder cycloadditions on synthetic RNA in mammalian cells. Bioconjug Chem 25:1438–1443CrossRefPubMedGoogle Scholar
  24. 24.
    Schoch J, Ameta S, Jaschke A (2011) Inverse electron-demand Diels-Alder reactions for the selective and efficient labeling of RNA. Chem Commun 47:12536–12537CrossRefGoogle Scholar
  25. 25.
    Grammel M, Hang H, Conrad NK (2012) Chemical reporters for monitoring RNA synthesis and poly(A) tail dynamics. Chembiochem 13:1112–1115CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li F, Dong J, Hu X et al (2015) A covalent approach for site-specific RNA labeling in mammalian cells. Angew Chem Int Ed Engl 54:4597–4602CrossRefPubMedGoogle Scholar
  27. 27.
    Winz ML, Samanta A, Benzinger D et al (2012) Site-specific terminal and internal labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free strain-promoted click chemistry. Nucleic Acids Res 40:e78CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Holstein JM, Schulz D, Rentmeister A (2014) Bioorthogonal site-specific labeling of the 5′-cap structure in eukaryotic mRNAs. Chem Commun 50:4478–4481CrossRefGoogle Scholar
  29. 29.
    Holstein JM, Stummer D, Rentmeister A (2015) Enzymatic modification of 5′-capped RNA with a 4-vinylbenzyl group provides a platform for photoclick and inverse electron-demand Diels–Alder reaction. Chem Sci 6:1362–1369CrossRefGoogle Scholar
  30. 30.
    Stummer D, Herrmann C, Rentmeister A (2015) Quantum chemical calculations and experimental validation of the photoclick reaction for fluorescent labeling of the 5′ cap of eukaryotic mRNAs. Chem Open 4:295–301Google Scholar
  31. 31.
    Hausmann S, Shuman S (2005) Giardia lamblia RNA cap guanine-N2 methyltransferase (Tgs2). J Biol Chem 280:32101–32106CrossRefPubMedGoogle Scholar
  32. 32.
    Dalhoff C, Lukinavicius G, Klimasauakas S et al (2006) Synthesis of S-adenosyl-L-methionine analogs and their use for sequence-specific transalkylation of DNA by methyltransferases. Nat Protoc 1:1879–1886CrossRefPubMedGoogle Scholar
  33. 33.
    Islam K, Bothwell I, Chen Y et al (2012) Bioorthogonal profiling of protein methylation using azido derivative of S-adenosyl-L-methionine. J Am Chem Soc 134:5909–5915CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Peters W, Willnow S, Duisken M et al (2010) Enzymatic site-specific functionalization of protein methyltransferase substrates with alkynes for click labeling. Angew Chem Int Ed 49:5170–5173CrossRefGoogle Scholar
  35. 35.
    Sambrook J (2001) Molecular cloning: a laboratory manual/Joseph Sambrook, David W. Russell. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  36. 36.
    Hoffman JL (1986) Chromatographic analysis of the chiral and covalent instability of S-adenosyl-L-methionine. Biochemistry 25:4444–4449CrossRefPubMedGoogle Scholar
  37. 37.
    Iwig DF, Booker SJ (2004) Insight into the polar reactivity of the onium chalcogen analogues of S-adenosyl-L-methionine. Biochemistry 43:13496–13509CrossRefPubMedGoogle Scholar
  38. 38.
    Schulz D, Rentmeister A (2012) An enzyme-coupled high-throughput assay for screening RNA methyltransferase activity in E. coli cell lysate. RNA Biol 9:577–586CrossRefPubMedGoogle Scholar
  39. 39.
    Hendricks CL, Ross JR, Pichersky E et al (2004) An enzyme-coupled colorimetric assay for S-adenosylmethionine-dependent methyltransferases. Anal Biochem 326:100–105CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Josephin M. Holstein
    • 1
  • Daniela Stummer
    • 1
    • 2
  • Andrea Rentmeister
    • 1
    • 2
    Email author
  1. 1.Westfälische Wilhelms-Universität MünsterInstitute of BiochemistryMuensterGermany
  2. 2.Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM)University of MuensterMuensterGermany

Personalised recommendations